diff --git a/pandas/_libs/tslibs/period.pyx b/pandas/_libs/tslibs/period.pyx index eeaf472c23b60..74804336f09a3 100644 --- a/pandas/_libs/tslibs/period.pyx +++ b/pandas/_libs/tslibs/period.pyx @@ -2701,8 +2701,8 @@ class Period(_Period): year=None, month=None, quarter=None, day=None, hour=None, minute=None, second=None): # freq points to a tuple (base, mult); base is one of the defined - # periods such as A, Q, etc. Every five minutes would be, e.g., - # ('T', 5) but may be passed in as a string like '5T' + # periods such as Y, Q, etc. Every five minutes would be, e.g., + # ('min', 5) but may be passed in as a string like '5min' # ordinal is the period offset from the gregorian proleptic epoch diff --git a/pandas/core/arrays/period.py b/pandas/core/arrays/period.py index e3492dd21ea57..4c3b2e549e49d 100644 --- a/pandas/core/arrays/period.py +++ b/pandas/core/arrays/period.py @@ -623,7 +623,7 @@ def to_timestamp(self, freq=None, how: str = "start") -> DatetimeArray: ---------- freq : str or DateOffset, optional Target frequency. The default is 'D' for week or longer, - 'S' otherwise. + 's' otherwise. how : {'s', 'e', 'start', 'end'} Whether to use the start or end of the time period being converted. diff --git a/pandas/tests/io/json/test_json_table_schema.py b/pandas/tests/io/json/test_json_table_schema.py index 7569a74752bf2..cc101bb9c8b6d 100644 --- a/pandas/tests/io/json/test_json_table_schema.py +++ b/pandas/tests/io/json/test_json_table_schema.py @@ -801,7 +801,7 @@ def test_comprehensive(self): "A": [1, 2, 3, 4], "B": ["a", "b", "c", "c"], "C": pd.date_range("2016-01-01", freq="d", periods=4), - # 'D': pd.timedelta_range('1H', periods=4, freq='T'), + # 'D': pd.timedelta_range('1h', periods=4, freq='min'), "E": pd.Series(pd.Categorical(["a", "b", "c", "c"])), "F": pd.Series(pd.Categorical(["a", "b", "c", "c"], ordered=True)), "G": [1.1, 2.2, 3.3, 4.4],