diff --git a/asv_bench/benchmarks/frame_methods.py b/asv_bench/benchmarks/frame_methods.py index e3176830c23fb..70ea19d6af2c9 100644 --- a/asv_bench/benchmarks/frame_methods.py +++ b/asv_bench/benchmarks/frame_methods.py @@ -511,8 +511,8 @@ def time_apply_axis_1(self): def time_apply_lambda_mean(self): self.df.apply(lambda x: x.mean()) - def time_apply_np_mean(self): - self.df.apply(np.mean) + def time_apply_str_mean(self): + self.df.apply("mean") def time_apply_pass_thru(self): self.df.apply(lambda x: x) diff --git a/asv_bench/benchmarks/groupby.py b/asv_bench/benchmarks/groupby.py index e63e66f441afe..334fcdd1d45df 100644 --- a/asv_bench/benchmarks/groupby.py +++ b/asv_bench/benchmarks/groupby.py @@ -329,16 +329,11 @@ def time_different_str_functions(self, df): {"value1": "mean", "value2": "var", "value3": "sum"} ) - def time_different_numpy_functions(self, df): - df.groupby(["key1", "key2"]).agg( - {"value1": np.mean, "value2": np.var, "value3": np.sum} - ) - - def time_different_python_functions_multicol(self, df): - df.groupby(["key1", "key2"]).agg([sum, min, max]) + def time_different_str_functions_multicol(self, df): + df.groupby(["key1", "key2"]).agg(["sum", "min", "max"]) - def time_different_python_functions_singlecol(self, df): - df.groupby("key1")[["value1", "value2", "value3"]].agg([sum, min, max]) + def time_different_str_functions_singlecol(self, df): + df.groupby("key1").agg({"value1": "mean", "value2": "var", "value3": "sum"}) class GroupStrings: @@ -381,8 +376,8 @@ def time_cython_sum(self, df): def time_col_select_lambda_sum(self, df): df.groupby(["key1", "key2"])["data1"].agg(lambda x: x.values.sum()) - def time_col_select_numpy_sum(self, df): - df.groupby(["key1", "key2"])["data1"].agg(np.sum) + def time_col_select_str_sum(self, df): + df.groupby(["key1", "key2"])["data1"].agg("sum") class Size: @@ -894,8 +889,8 @@ def setup(self): def time_transform_lambda_max(self): self.df.groupby(level="lev1").transform(lambda x: max(x)) - def time_transform_ufunc_max(self): - self.df.groupby(level="lev1").transform(np.max) + def time_transform_str_max(self): + self.df.groupby(level="lev1").transform("max") def time_transform_lambda_max_tall(self): self.df_tall.groupby(level=0).transform(lambda x: np.max(x, axis=0)) @@ -926,7 +921,7 @@ def setup(self): self.df = DataFrame({"signal": np.random.rand(N)}) def time_transform_mean(self): - self.df["signal"].groupby(self.g).transform(np.mean) + self.df["signal"].groupby(self.g).transform("mean") class TransformNaN: diff --git a/asv_bench/benchmarks/reshape.py b/asv_bench/benchmarks/reshape.py index f80e9fd9ff256..54326a4433756 100644 --- a/asv_bench/benchmarks/reshape.py +++ b/asv_bench/benchmarks/reshape.py @@ -218,7 +218,7 @@ def time_pivot_table_margins(self): def time_pivot_table_categorical(self): self.df2.pivot_table( - index="col1", values="col3", columns="col2", aggfunc=np.sum, fill_value=0 + index="col1", values="col3", columns="col2", aggfunc="sum", fill_value=0 ) def time_pivot_table_categorical_observed(self): @@ -226,7 +226,7 @@ def time_pivot_table_categorical_observed(self): index="col1", values="col3", columns="col2", - aggfunc=np.sum, + aggfunc="sum", fill_value=0, observed=True, )