diff --git a/pandas/core/generic.py b/pandas/core/generic.py index 6288ebe77c8c0..b90833bda82b5 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -7247,12 +7247,15 @@ def interpolate( given length of interval. * 'index', 'values': use the actual numerical values of the index. * 'pad': Fill in NaNs using existing values. - * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'spline', + * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial': Passed to - `scipy.interpolate.interp1d`. These methods use the numerical + `scipy.interpolate.interp1d`, whereas 'spline' is passed to + `scipy.interpolate.UnivariateSpline`. These methods use the numerical values of the index. Both 'polynomial' and 'spline' require that you also specify an `order` (int), e.g. - ``df.interpolate(method='polynomial', order=5)``. + ``df.interpolate(method='polynomial', order=5)``. Note that, + `slinear` method in Pandas refers to the Scipy first order `spline` + instead of Pandas first order `spline`. * 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima', 'cubicspline': Wrappers around the SciPy interpolation methods of similar names. See `Notes`.