diff --git a/pandas/core/algorithms.py b/pandas/core/algorithms.py index 112c401500472..393eb2997f6f0 100644 --- a/pandas/core/algorithms.py +++ b/pandas/core/algorithms.py @@ -500,7 +500,7 @@ def factorize_array( values: np.ndarray, na_sentinel: int = -1, size_hint: int | None = None, - na_value=None, + na_value: object = None, mask: npt.NDArray[np.bool_] | None = None, ) -> tuple[npt.NDArray[np.intp], np.ndarray]: """ diff --git a/pandas/core/arrays/base.py b/pandas/core/arrays/base.py index b06a46dfd1447..a188692a2d8f7 100644 --- a/pandas/core/arrays/base.py +++ b/pandas/core/arrays/base.py @@ -460,7 +460,7 @@ def to_numpy( self, dtype: npt.DTypeLike | None = None, copy: bool = False, - na_value=lib.no_default, + na_value: object = lib.no_default, ) -> np.ndarray: """ Convert to a NumPy ndarray. diff --git a/pandas/core/arrays/masked.py b/pandas/core/arrays/masked.py index 5ae71b305ac60..90f56a3eea0fb 100644 --- a/pandas/core/arrays/masked.py +++ b/pandas/core/arrays/masked.py @@ -337,7 +337,7 @@ def to_numpy( self, dtype: npt.DTypeLike | None = None, copy: bool = False, - na_value: Scalar | lib.NoDefault | libmissing.NAType = lib.no_default, + na_value: object = lib.no_default, ) -> np.ndarray: """ Convert to a NumPy Array. diff --git a/pandas/core/arrays/numpy_.py b/pandas/core/arrays/numpy_.py index be7dc5e0ebdc6..36c67d2fe1225 100644 --- a/pandas/core/arrays/numpy_.py +++ b/pandas/core/arrays/numpy_.py @@ -368,7 +368,7 @@ def to_numpy( self, dtype: npt.DTypeLike | None = None, copy: bool = False, - na_value=lib.no_default, + na_value: object = lib.no_default, ) -> np.ndarray: result = np.asarray(self._ndarray, dtype=dtype) diff --git a/pandas/core/base.py b/pandas/core/base.py index ce11f31281f5d..12ab942e70574 100644 --- a/pandas/core/base.py +++ b/pandas/core/base.py @@ -433,7 +433,7 @@ def to_numpy( self, dtype: npt.DTypeLike | None = None, copy: bool = False, - na_value=lib.no_default, + na_value: object = lib.no_default, **kwargs, ) -> np.ndarray: """ diff --git a/pandas/core/internals/managers.py b/pandas/core/internals/managers.py index 0a102d4e2bdc9..ded525cd099fc 100644 --- a/pandas/core/internals/managers.py +++ b/pandas/core/internals/managers.py @@ -1511,7 +1511,7 @@ def as_array( self, dtype: np.dtype | None = None, copy: bool = False, - na_value=lib.no_default, + na_value: object = lib.no_default, ) -> np.ndarray: """ Convert the blockmanager data into an numpy array. @@ -1570,7 +1570,7 @@ def as_array( def _interleave( self, dtype: np.dtype | None = None, - na_value=lib.no_default, + na_value: object = lib.no_default, ) -> np.ndarray: """ Return ndarray from blocks with specified item order diff --git a/pandas/tests/extension/decimal/array.py b/pandas/tests/extension/decimal/array.py index a3edc95fce96b..6eaa90d7b868a 100644 --- a/pandas/tests/extension/decimal/array.py +++ b/pandas/tests/extension/decimal/array.py @@ -105,7 +105,11 @@ def _from_factorized(cls, values, original): _HANDLED_TYPES = (decimal.Decimal, numbers.Number, np.ndarray) def to_numpy( - self, dtype=None, copy: bool = False, na_value=no_default, decimals=None + self, + dtype=None, + copy: bool = False, + na_value: object = no_default, + decimals=None, ) -> np.ndarray: result = np.asarray(self, dtype=dtype) if decimals is not None: