diff --git a/pandas/core/groupby/groupby.py b/pandas/core/groupby/groupby.py index 9c695148a75c0..97f49eabcc5c3 100644 --- a/pandas/core/groupby/groupby.py +++ b/pandas/core/groupby/groupby.py @@ -2896,7 +2896,7 @@ def _get_cythonized_result( grouper = self.grouper ids, _, ngroups = grouper.group_info - output: dict[base.OutputKey, np.ndarray] = {} + output: dict[base.OutputKey, ArrayLike] = {} base_func = getattr(libgroupby, how) base_func = partial(base_func, labels=ids) @@ -2911,6 +2911,7 @@ def blk_func(values: ArrayLike) -> ArrayLike: else: result_sz = len(values) + result: ArrayLike result = np.zeros(result_sz, dtype=cython_dtype) if needs_2d: result = result.reshape((-1, 1)) diff --git a/pandas/core/reshape/tile.py b/pandas/core/reshape/tile.py index c5d06bcef72a4..656d38a50f77f 100644 --- a/pandas/core/reshape/tile.py +++ b/pandas/core/reshape/tile.py @@ -418,7 +418,11 @@ def _bins_to_cuts( bins = unique_bins side = "left" if right else "right" - ids = ensure_platform_int(bins.searchsorted(x, side=side)) + # error: No overload variant of "searchsorted" of "ndarray" matches + # argument types "Any", "str" + ids = ensure_platform_int( + bins.searchsorted(x, side=side) # type: ignore[call-overload] + ) if include_lowest: ids[np.asarray(x) == bins[0]] = 1