diff --git a/pandas/core/arrays/floating.py b/pandas/core/arrays/floating.py index c3710196a8611..a230760ca1abe 100644 --- a/pandas/core/arrays/floating.py +++ b/pandas/core/arrays/floating.py @@ -25,8 +25,7 @@ from pandas.core.dtypes.dtypes import register_extension_dtype from pandas.core.dtypes.missing import isna -from pandas.core import nanops, ops -from pandas.core.array_algos import masked_reductions +from pandas.core import ops from pandas.core.ops import invalid_comparison from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.tools.numeric import to_numeric @@ -452,33 +451,21 @@ def cmp_method(self, other): name = f"__{op.__name__}__" return set_function_name(cmp_method, name, cls) - def _reduce(self, name: str, skipna: bool = True, **kwargs): - data = self._data - mask = self._mask - - if name in {"sum", "prod", "min", "max"}: - op = getattr(masked_reductions, name) - return op(data, mask, skipna=skipna, **kwargs) - - # coerce to a nan-aware float if needed - # (we explicitly use NaN within reductions) - if self._hasna: - data = self.to_numpy("float64", na_value=np.nan) - - op = getattr(nanops, "nan" + name) - result = op(data, axis=0, skipna=skipna, mask=mask, **kwargs) + def sum(self, skipna=True, min_count=0, **kwargs): + nv.validate_sum((), kwargs) + return super()._reduce("sum", skipna=skipna, min_count=min_count) - if np.isnan(result): - return libmissing.NA + def prod(self, skipna=True, min_count=0, **kwargs): + nv.validate_prod((), kwargs) + return super()._reduce("prod", skipna=skipna, min_count=min_count) - return result + def min(self, skipna=True, **kwargs): + nv.validate_min((), kwargs) + return super()._reduce("min", skipna=skipna) - def sum(self, skipna=True, min_count=0, **kwargs): - nv.validate_sum((), kwargs) - result = masked_reductions.sum( - values=self._data, mask=self._mask, skipna=skipna, min_count=min_count - ) - return result + def max(self, skipna=True, **kwargs): + nv.validate_max((), kwargs) + return super()._reduce("max", skipna=skipna) def _maybe_mask_result(self, result, mask, other, op_name: str): """ diff --git a/pandas/tests/arrays/floating/test_function.py b/pandas/tests/arrays/floating/test_function.py index 84c650f880541..2767d93741d4c 100644 --- a/pandas/tests/arrays/floating/test_function.py +++ b/pandas/tests/arrays/floating/test_function.py @@ -112,8 +112,8 @@ def test_value_counts_empty(): @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("min_count", [0, 4]) -def test_floating_array_sum(skipna, min_count): - arr = pd.array([1, 2, 3, None], dtype="Float64") +def test_floating_array_sum(skipna, min_count, dtype): + arr = pd.array([1, 2, 3, None], dtype=dtype) result = arr.sum(skipna=skipna, min_count=min_count) if skipna and min_count == 0: assert result == 6.0 @@ -152,3 +152,26 @@ def test_preserve_dtypes(op): index=pd.Index(["a", "b"], name="A"), ) tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("skipna", [True, False]) +@pytest.mark.parametrize("method", ["min", "max"]) +def test_floating_array_min_max(skipna, method, dtype): + arr = pd.array([0.0, 1.0, None], dtype=dtype) + func = getattr(arr, method) + result = func(skipna=skipna) + if skipna: + assert result == (0 if method == "min" else 1) + else: + assert result is pd.NA + + +@pytest.mark.parametrize("skipna", [True, False]) +@pytest.mark.parametrize("min_count", [0, 9]) +def test_floating_array_prod(skipna, min_count, dtype): + arr = pd.array([1.0, 2.0, None], dtype=dtype) + result = arr.prod(skipna=skipna, min_count=min_count) + if skipna and min_count == 0: + assert result == 2 + else: + assert result is pd.NA