diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py index 82e629d184b19..3172fb4e0e853 100644 --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -9,7 +9,6 @@ import copy from functools import partial from textwrap import dedent -import typing from typing import ( TYPE_CHECKING, Any, @@ -22,6 +21,7 @@ Optional, Sequence, Type, + TypeVar, Union, ) import warnings @@ -92,7 +92,7 @@ # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list -ScalarResult = typing.TypeVar("ScalarResult") +ScalarResult = TypeVar("ScalarResult") def generate_property(name: str, klass: Type[FrameOrSeries]): @@ -606,8 +606,8 @@ def filter(self, func, dropna=True, *args, **kwargs): wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. - def true_and_notna(x, *args, **kwargs) -> bool: - b = wrapper(x, *args, **kwargs) + def true_and_notna(x) -> bool: + b = wrapper(x) return b and notna(b) try: @@ -1210,7 +1210,7 @@ def _wrap_applied_output(self, keys, values, not_indexed_same=False): # TODO: Remove when default dtype of empty Series is object kwargs = first_not_none._construct_axes_dict() backup = create_series_with_explicit_dtype( - **kwargs, dtype_if_empty=object + dtype_if_empty=object, **kwargs ) values = [x if (x is not None) else backup for x in values]