diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py index 60e23b14eaf09..4b1f6cfe0a662 100644 --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -30,7 +30,7 @@ import numpy as np from pandas._libs import lib -from pandas._typing import FrameOrSeries, FrameOrSeriesUnion +from pandas._typing import ArrayLike, FrameOrSeries, FrameOrSeriesUnion from pandas.util._decorators import Appender, Substitution, doc from pandas.core.dtypes.cast import ( @@ -59,6 +59,7 @@ validate_func_kwargs, ) import pandas.core.algorithms as algorithms +from pandas.core.arrays import ExtensionArray from pandas.core.base import DataError, SpecificationError import pandas.core.common as com from pandas.core.construction import create_series_with_explicit_dtype @@ -1033,32 +1034,31 @@ def _cython_agg_blocks( no_result = object() - def cast_result_block(result, block: "Block", how: str) -> "Block": - # see if we can cast the block to the desired dtype + def cast_agg_result(result, values: ArrayLike, how: str) -> ArrayLike: + # see if we can cast the values to the desired dtype # this may not be the original dtype assert not isinstance(result, DataFrame) assert result is not no_result - dtype = maybe_cast_result_dtype(block.dtype, how) + dtype = maybe_cast_result_dtype(values.dtype, how) result = maybe_downcast_numeric(result, dtype) - if block.is_extension and isinstance(result, np.ndarray): - # e.g. block.values was an IntegerArray - # (1, N) case can occur if block.values was Categorical + if isinstance(values, ExtensionArray) and isinstance(result, np.ndarray): + # e.g. values was an IntegerArray + # (1, N) case can occur if values was Categorical # and result is ndarray[object] # TODO(EA2D): special casing not needed with 2D EAs assert result.ndim == 1 or result.shape[0] == 1 try: # Cast back if feasible - result = type(block.values)._from_sequence( - result.ravel(), dtype=block.values.dtype + result = type(values)._from_sequence( + result.ravel(), dtype=values.dtype ) except (ValueError, TypeError): # reshape to be valid for non-Extension Block result = result.reshape(1, -1) - agg_block: "Block" = block.make_block(result) - return agg_block + return result def blk_func(block: "Block") -> List["Block"]: new_blocks: List["Block"] = [] @@ -1092,28 +1092,25 @@ def blk_func(block: "Block") -> List["Block"]: # Categoricals. This will done by later self._reindex_output() # Doing it here creates an error. See GH#34951 sgb = get_groupby(obj, self.grouper, observed=True) - try: - result = sgb.aggregate(lambda x: alt(x, axis=self.axis)) - except TypeError: - # we may have an exception in trying to aggregate - # continue and exclude the block - raise - else: - assert isinstance(result, (Series, DataFrame)) # for mypy - # In the case of object dtype block, it may have been split - # in the operation. We un-split here. - result = result._consolidate() - assert isinstance(result, (Series, DataFrame)) # for mypy - assert len(result._mgr.blocks) == 1 - - # unwrap DataFrame to get array - result = result._mgr.blocks[0].values - if isinstance(result, np.ndarray) and result.ndim == 1: - result = result.reshape(1, -1) - agg_block = cast_result_block(result, block, how) - new_blocks = [agg_block] + result = sgb.aggregate(lambda x: alt(x, axis=self.axis)) + + assert isinstance(result, (Series, DataFrame)) # for mypy + # In the case of object dtype block, it may have been split + # in the operation. We un-split here. + result = result._consolidate() + assert isinstance(result, (Series, DataFrame)) # for mypy + assert len(result._mgr.blocks) == 1 + + # unwrap DataFrame to get array + result = result._mgr.blocks[0].values + if isinstance(result, np.ndarray) and result.ndim == 1: + result = result.reshape(1, -1) + res_values = cast_agg_result(result, block.values, how) + agg_block = block.make_block(res_values) + new_blocks = [agg_block] else: - agg_block = cast_result_block(result, block, how) + res_values = cast_agg_result(result, block.values, how) + agg_block = block.make_block(res_values) new_blocks = [agg_block] return new_blocks