diff --git a/doc/source/user_guide/computation.rst b/doc/source/user_guide/computation.rst index d7875e5b8d861..151ef36be7c98 100644 --- a/doc/source/user_guide/computation.rst +++ b/doc/source/user_guide/computation.rst @@ -361,6 +361,9 @@ compute the mean absolute deviation on a rolling basis: @savefig rolling_apply_ex.png s.rolling(window=60).apply(mad, raw=True).plot(style='k') +Using the Numba engine +~~~~~~~~~~~~~~~~~~~~~~ + .. versionadded:: 1.0 Additionally, :meth:`~Rolling.apply` can leverage `Numba `__ diff --git a/doc/source/user_guide/enhancingperf.rst b/doc/source/user_guide/enhancingperf.rst index 24fcb369804c6..9e101c1a20371 100644 --- a/doc/source/user_guide/enhancingperf.rst +++ b/doc/source/user_guide/enhancingperf.rst @@ -373,6 +373,13 @@ nicer interface by passing/returning pandas objects. In this example, using Numba was faster than Cython. +Numba as an argument +~~~~~~~~~~~~~~~~~~~~ + +Additionally, we can leverage the power of `Numba `__ +by calling it as an argument in :meth:`~Rolling.apply`. See :ref:`Computation tools +` for an extensive example. + Vectorize ~~~~~~~~~