diff --git a/pandas/core/frame.py b/pandas/core/frame.py index 4e86b3710a1bd..7171a02fb5aa4 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -1233,8 +1233,8 @@ def from_dict(cls, data, orient="columns", dtype=None, columns=None) -> "DataFra See Also -------- - DataFrame.from_records : DataFrame from ndarray (structured - dtype), list of tuples, dict, or DataFrame. + DataFrame.from_records : DataFrame from structured ndarray, sequence + of tuples or dicts, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples @@ -1633,9 +1633,13 @@ def from_records( """ Convert structured or record ndarray to DataFrame. + Creates a DataFrame object from a structured ndarray, sequence of + tuples or dicts, or DataFrame. + Parameters ---------- - data : ndarray (structured dtype), list of tuples, dict, or DataFrame + data : structured ndarray, sequence of tuples or dicts, or DataFrame + Structured input data. index : str, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use. @@ -1656,6 +1660,47 @@ def from_records( Returns ------- DataFrame + + See Also + -------- + DataFrame.from_dict : DataFrame from dict of array-like or dicts. + DataFrame : DataFrame object creation using constructor. + + Examples + -------- + Data can be provided as a structured ndarray: + + >>> data = np.array([(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')], + ... dtype=[('col_1', 'i4'), ('col_2', 'U1')]) + >>> pd.DataFrame.from_records(data) + col_1 col_2 + 0 3 a + 1 2 b + 2 1 c + 3 0 d + + Data can be provided as a list of dicts: + + >>> data = [{'col_1': 3, 'col_2': 'a'}, + ... {'col_1': 2, 'col_2': 'b'}, + ... {'col_1': 1, 'col_2': 'c'}, + ... {'col_1': 0, 'col_2': 'd'}] + >>> pd.DataFrame.from_records(data) + col_1 col_2 + 0 3 a + 1 2 b + 2 1 c + 3 0 d + + Data can be provided as a list of tuples with corresponding columns: + + >>> data = [(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')] + >>> pd.DataFrame.from_records(data, columns=['col_1', 'col_2']) + col_1 col_2 + 0 3 a + 1 2 b + 2 1 c + 3 0 d """ # Make a copy of the input columns so we can modify it if columns is not None: