diff --git a/doc/source/development/policies.rst b/doc/source/development/policies.rst index b7cc3db3ad260..1031bbfc46457 100644 --- a/doc/source/development/policies.rst +++ b/doc/source/development/policies.rst @@ -6,7 +6,7 @@ Policies .. _policies.version: -Version Policy +Version policy ~~~~~~~~~~~~~~ .. versionchanged:: 1.0.0 @@ -48,7 +48,7 @@ deprecation removed in the next next major release (2.0.0). These policies do not apply to features marked as **experimental** in the documentation. pandas may change the behavior of experimental features at any time. -Python Support +Python support ~~~~~~~~~~~~~~ pandas will only drop support for specific Python versions (e.g. 3.6.x, 3.7.x) in diff --git a/doc/source/development/roadmap.rst b/doc/source/development/roadmap.rst index e57ff82add278..d331491d02883 100644 --- a/doc/source/development/roadmap.rst +++ b/doc/source/development/roadmap.rst @@ -152,7 +152,7 @@ We'd like to fund improvements and maintenance of these tools to .. _roadmap.evolution: -Roadmap Evolution +Roadmap evolution ----------------- pandas continues to evolve. The direction is primarily determined by community diff --git a/doc/source/ecosystem.rst b/doc/source/ecosystem.rst index b7e53b84f0e02..fd5e7c552fe0a 100644 --- a/doc/source/ecosystem.rst +++ b/doc/source/ecosystem.rst @@ -5,7 +5,7 @@ {{ header }} **************** -Pandas ecosystem +pandas ecosystem **************** Increasingly, packages are being built on top of pandas to address specific needs diff --git a/doc/source/getting_started/comparison/comparison_with_sas.rst b/doc/source/getting_started/comparison/comparison_with_sas.rst index 4e284fe7b5968..f12d97d1d0fde 100644 --- a/doc/source/getting_started/comparison/comparison_with_sas.rst +++ b/doc/source/getting_started/comparison/comparison_with_sas.rst @@ -698,7 +698,7 @@ In pandas this would be written as: tips.groupby(['sex', 'smoker']).first() -Other Considerations +Other considerations -------------------- Disk vs memory @@ -752,4 +752,4 @@ to interop data between SAS and pandas is to serialize to csv. Wall time: 14.6 s In [9]: %time df = pd.read_csv('big.csv') - Wall time: 4.86 s + Wall time: 4.86 s \ No newline at end of file diff --git a/doc/source/getting_started/comparison/comparison_with_sql.rst b/doc/source/getting_started/comparison/comparison_with_sql.rst index e3c8f8f5ccbcd..c46ec9b3f7090 100644 --- a/doc/source/getting_started/comparison/comparison_with_sql.rst +++ b/doc/source/getting_started/comparison/comparison_with_sql.rst @@ -388,10 +388,10 @@ In pandas, you can use :meth:`~pandas.concat` in conjunction with pd.concat([df1, df2]).drop_duplicates() -Pandas equivalents for some SQL analytic and aggregate functions +pandas equivalents for some SQL analytic and aggregate functions ---------------------------------------------------------------- -Top N rows with offset +Top n rows with offset ~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: sql @@ -405,7 +405,7 @@ Top N rows with offset tips.nlargest(10 + 5, columns='tip').tail(10) -Top N rows per group +Top n rows per group ~~~~~~~~~~~~~~~~~~~~ .. code-block:: sql