diff --git a/doc/source/getting_started/10min.rst b/doc/source/getting_started/10min.rst index a635b5656bd2d..9994287c827e3 100644 --- a/doc/source/getting_started/10min.rst +++ b/doc/source/getting_started/10min.rst @@ -39,7 +39,7 @@ and labeled columns: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) df -Creating a ``DataFrame`` by passing a dict of objects that can be converted to series-like. +Creating a :class:`DataFrame` by passing a dict of objects that can be converted to series-like. .. ipython:: python @@ -51,7 +51,7 @@ Creating a ``DataFrame`` by passing a dict of objects that can be converted to s 'F': 'foo'}) df2 -The columns of the resulting ``DataFrame`` have different +The columns of the resulting :class:`DataFrame` have different :ref:`dtypes `. .. ipython:: python @@ -169,7 +169,7 @@ See the indexing documentation :ref:`Indexing and Selecting Data ` and Getting ~~~~~~~ -Selecting a single column, which yields a ``Series``, +Selecting a single column, which yields a :class:`Series`, equivalent to ``df.A``: .. ipython:: python @@ -469,10 +469,10 @@ Concatenating pandas objects together with :func:`concat`: pd.concat(pieces) .. note:: - Adding a column to a ``DataFrame`` is relatively fast. However, adding + Adding a column to a :class:`DataFrame` is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a - pre-built list of records to the ``DataFrame`` constructor instead - of building a ``DataFrame`` by iteratively appending records to it. + pre-built list of records to the :class:`DataFrame` constructor instead + of building a :class:`DataFrame` by iteratively appending records to it. See :ref:`Appending to dataframe ` for more. Join @@ -520,7 +520,7 @@ See the :ref:`Grouping section `. 'D': np.random.randn(8)}) df -Grouping and then applying the :meth:`~DataFrame.sum` function to the resulting +Grouping and then applying the :meth:`~pandas.core.groupby.GroupBy.sum` function to the resulting groups. .. ipython:: python @@ -528,7 +528,7 @@ groups. df.groupby('A').sum() Grouping by multiple columns forms a hierarchical index, and again we can -apply the ``sum`` function. +apply the :meth:`~pandas.core.groupby.GroupBy.sum` function. .. ipython:: python @@ -648,7 +648,7 @@ the quarter end: Categoricals ------------ -pandas can include categorical data in a ``DataFrame``. For full docs, see the +pandas can include categorical data in a :class:`DataFrame`. For full docs, see the :ref:`categorical introduction ` and the :ref:`API documentation `. .. ipython:: python @@ -664,14 +664,13 @@ Convert the raw grades to a categorical data type. df["grade"] Rename the categories to more meaningful names (assigning to -``Series.cat.categories`` is inplace!). +:meth:`Series.cat.categories` is inplace!). .. ipython:: python df["grade"].cat.categories = ["very good", "good", "very bad"] -Reorder the categories and simultaneously add the missing categories (methods under ``Series -.cat`` return a new ``Series`` by default). +Reorder the categories and simultaneously add the missing categories (methods under :meth:`Series.cat` return a new :class:`Series` by default). .. ipython:: python