diff --git a/ci/code_checks.sh b/ci/code_checks.sh
index 46ace2dd9d70e..e016dac8a3407 100755
--- a/ci/code_checks.sh
+++ b/ci/code_checks.sh
@@ -303,7 +303,7 @@ fi
### DOCSTRINGS ###
if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
- MSG='Validate docstrings (GL03, GL04, GL05, GL06, GL07, GL09, GL10, SS04, SS05, PR03, PR04, PR05, PR10, EX04, RT01, RT04, RT05, SA01, SA02, SA03, SA05)' ; echo $MSG
+ MSG='Validate docstrings (GL03, GL04, GL05, GL06, GL07, GL09, GL10, SS04, SS05, PR03, PR04, PR05, PR09, PR10, EX04, RT01, RT04, RT05, SA01, SA02, SA03, SA05)' ; echo $MSG
$BASE_DIR/scripts/validate_docstrings.py --format=azure --errors=GL03,GL04,GL05,GL06,GL07,GL09,GL10,SS04,SS05,PR03,PR04,PR05,PR10,EX04,RT01,RT04,RT05,SA01,SA02,SA03,SA05
RET=$(($RET + $?)) ; echo $MSG "DONE"
diff --git a/pandas/core/arrays/categorical.py b/pandas/core/arrays/categorical.py
index 53051baa8e67e..7a598cda345f3 100644
--- a/pandas/core/arrays/categorical.py
+++ b/pandas/core/arrays/categorical.py
@@ -232,7 +232,7 @@ class Categorical(ExtensionArray, PandasObject):
`categories` attribute (which in turn is the `categories` argument, if
provided).
dtype : CategoricalDtype
- An instance of ``CategoricalDtype`` to use for this categorical
+ An instance of ``CategoricalDtype`` to use for this categorical.
.. versionadded:: 0.21.0
diff --git a/pandas/core/arrays/datetimes.py b/pandas/core/arrays/datetimes.py
index eb762a23d684d..aeb953031ae89 100644
--- a/pandas/core/arrays/datetimes.py
+++ b/pandas/core/arrays/datetimes.py
@@ -230,12 +230,12 @@ class DatetimeArray(dtl.DatetimeLikeArrayMixin, dtl.TimelikeOps, dtl.DatelikeOps
The datetime data.
For DatetimeArray `values` (or a Series or Index boxing one),
- `dtype` and `freq` will be extracted from `values`, with
- precedence given to
+ `dtype` and `freq` will be extracted from `values`.
dtype : numpy.dtype or DatetimeTZDtype
Note that the only NumPy dtype allowed is 'datetime64[ns]'.
freq : str or Offset, optional
+ The frequency.
copy : bool, default False
Whether to copy the underlying array of values.
diff --git a/pandas/core/arrays/period.py b/pandas/core/arrays/period.py
index df057ce5a0104..3c106c3780fef 100644
--- a/pandas/core/arrays/period.py
+++ b/pandas/core/arrays/period.py
@@ -440,8 +440,9 @@ def to_timestamp(self, freq=None, how="start"):
----------
freq : str or DateOffset, optional
Target frequency. The default is 'D' for week or longer,
- 'S' otherwise
+ 'S' otherwise.
how : {'s', 'e', 'start', 'end'}
+ Whether to use the start or end of the time period being converted.
Returns
-------
@@ -530,17 +531,20 @@ def asfreq(self, freq=None, how="E"):
Parameters
----------
freq : str
- a frequency
+ A frequency.
how : str {'E', 'S'}
- 'E', 'END', or 'FINISH' for end,
- 'S', 'START', or 'BEGIN' for start.
Whether the elements should be aligned to the end
- or start within pa period. January 31st ('END') vs.
- January 1st ('START') for example.
+ or start within pa period.
+
+ * 'E', 'END', or 'FINISH' for end,
+ * 'S', 'START', or 'BEGIN' for start.
+
+ January 31st ('END') vs. January 1st ('START') for example.
Returns
-------
- new : Period Array/Index with the new frequency
+ Period Array/Index
+ Constructed with the new frequency.
Examples
--------
diff --git a/pandas/core/computation/eval.py b/pandas/core/computation/eval.py
index 7599a82ddffed..f36ac95f592e3 100644
--- a/pandas/core/computation/eval.py
+++ b/pandas/core/computation/eval.py
@@ -220,6 +220,7 @@ def eval(
truediv : bool, optional
Whether to use true division, like in Python >= 3.
+
deprecated:: 1.0.0
local_dict : dict or None, optional
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index 1de0d3b58dc5f..6c525989183db 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -140,11 +140,12 @@
Name or list of names to sort by.
- if `axis` is 0 or `'index'` then `by` may contain index
- levels and/or column labels
+ levels and/or column labels.
- if `axis` is 1 or `'columns'` then `by` may contain column
- levels and/or index labels
+ levels and/or index labels.
.. versionchanged:: 0.23.0
+
Allow specifying index or column level names.""",
versionadded_to_excel="",
optional_labels="""labels : array-like, optional
@@ -2141,9 +2142,10 @@ def to_html(
A ``border=border`` attribute is included in the opening
`
` tag. Default ``pd.options.display.html.border``.
encoding : str, default "utf-8"
- Set character encoding
+ Set character encoding.
.. versionadded:: 1.0
+
table_id : str, optional
A css id is included in the opening `` tag if specified.
@@ -7198,17 +7200,16 @@ def corr(self, method="pearson", min_periods=1):
Parameters
----------
method : {'pearson', 'kendall', 'spearman'} or callable
- Method of correlation:
-
+ Method of correlation.
* pearson : standard correlation coefficient
* kendall : Kendall Tau correlation coefficient
* spearman : Spearman rank correlation
* callable: callable with input two 1d ndarrays
- and returning a float. Note that the returned matrix from corr
- will have 1 along the diagonals and will be symmetric
- regardless of the callable's behavior.
+ and returning a float. Note that the returned matrix from corr
+ will have 1 along the diagonals and will be symmetric
+ regardless of the callable's behavior.
- .. versionadded:: 0.24.0
+ .. versionadded:: 0.24.0
min_periods : int, optional
Minimum number of observations required per pair of columns
@@ -7774,7 +7775,7 @@ def idxmin(self, axis=0, skipna=True):
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
- The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
@@ -7812,7 +7813,7 @@ def idxmax(self, axis=0, skipna=True):
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
- The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
diff --git a/pandas/core/generic.py b/pandas/core/generic.py
index 2b108d3997235..95d9af818c1bd 100644
--- a/pandas/core/generic.py
+++ b/pandas/core/generic.py
@@ -2397,7 +2397,7 @@ def to_hdf(
which may perform worse but allow more flexible operations
like searching / selecting subsets of the data.
- If None, pd.get_option('io.hdf.default_format') is checked,
- followed by fallback to "fixed"
+ followed by fallback to "fixed".
errors : str, default 'strict'
Specifies how encoding and decoding errors are to be handled.
See the errors argument for :func:`open` for a full list
@@ -2499,7 +2499,7 @@ def to_sql(
library. Legacy support is provided for sqlite3.Connection objects. The user
is responsible for engine disposal and connection closure for the SQLAlchemy
connectable See `here \
- `_
+ `_.
schema : str, optional
Specify the schema (if database flavor supports this). If None, use
diff --git a/pandas/core/groupby/groupby.py b/pandas/core/groupby/groupby.py
index 81a9145318cb5..5f543181cfb4e 100644
--- a/pandas/core/groupby/groupby.py
+++ b/pandas/core/groupby/groupby.py
@@ -2099,17 +2099,17 @@ def rank(
Parameters
----------
method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
- * average: average rank of group
- * min: lowest rank in group
- * max: highest rank in group
- * first: ranks assigned in order they appear in the array
- * dense: like 'min', but rank always increases by 1 between groups
+ * average: average rank of group.
+ * min: lowest rank in group.
+ * max: highest rank in group.
+ * first: ranks assigned in order they appear in the array.
+ * dense: like 'min', but rank always increases by 1 between groups.
ascending : bool, default True
False for ranks by high (1) to low (N).
na_option : {'keep', 'top', 'bottom'}, default 'keep'
- * keep: leave NA values where they are
- * top: smallest rank if ascending
- * bottom: smallest rank if descending
+ * keep: leave NA values where they are.
+ * top: smallest rank if ascending.
+ * bottom: smallest rank if descending.
pct : bool, default False
Compute percentage rank of data within each group.
axis : int, default 0
diff --git a/pandas/core/groupby/grouper.py b/pandas/core/groupby/grouper.py
index 747a32ae816be..05a5458f60cf5 100644
--- a/pandas/core/groupby/grouper.py
+++ b/pandas/core/groupby/grouper.py
@@ -34,8 +34,7 @@
class Grouper:
"""
- A Grouper allows the user to specify a groupby instruction for a target
- object.
+ A Grouper allows the user to specify a groupby instruction for an object.
This specification will select a column via the key parameter, or if the
level and/or axis parameters are given, a level of the index of the target
@@ -47,17 +46,18 @@ class Grouper:
Parameters
----------
key : str, defaults to None
- groupby key, which selects the grouping column of the target
+ Groupby key, which selects the grouping column of the target.
level : name/number, defaults to None
- the level for the target index
+ The level for the target index.
freq : str / frequency object, defaults to None
This will groupby the specified frequency if the target selection
(via key or level) is a datetime-like object. For full specification
of available frequencies, please see `here
`_.
- axis : number/name of the axis, defaults to 0
+ axis : str, int, defaults to 0
+ Number/name of the axis.
sort : bool, default to False
- whether to sort the resulting labels
+ Whether to sort the resulting labels.
closed : {'left' or 'right'}
Closed end of interval. Only when `freq` parameter is passed.
label : {'left' or 'right'}
diff --git a/pandas/core/indexes/period.py b/pandas/core/indexes/period.py
index 6465a0c1724af..eb75879bc57b5 100644
--- a/pandas/core/indexes/period.py
+++ b/pandas/core/indexes/period.py
@@ -80,8 +80,7 @@ class PeriodDelegateMixin(DatetimelikeDelegateMixin):
)
class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin):
"""
- Immutable ndarray holding ordinal values indicating regular periods in
- time such as particular years, quarters, months, etc.
+ Immutable ndarray holding ordinal values indicating regular periods in time.
Index keys are boxed to Period objects which carries the metadata (eg,
frequency information).
@@ -89,11 +88,11 @@ class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin):
Parameters
----------
data : array-like (1d int np.ndarray or PeriodArray), optional
- Optional period-like data to construct index with
+ Optional period-like data to construct index with.
copy : bool
- Make a copy of input ndarray
+ Make a copy of input ndarray.
freq : str or period object, optional
- One of pandas period strings or corresponding objects
+ One of pandas period strings or corresponding objects.
year : int, array, or Series, default None
month : int, array, or Series, default None
quarter : int, array, or Series, default None
@@ -102,7 +101,7 @@ class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin):
minute : int, array, or Series, default None
second : int, array, or Series, default None
tz : object, default None
- Timezone for converting datetime64 data to Periods
+ Timezone for converting datetime64 data to Periods.
dtype : str or PeriodDtype, default None
Attributes
diff --git a/pandas/core/window/ewm.py b/pandas/core/window/ewm.py
index baecba7e78384..441a8756f09e0 100644
--- a/pandas/core/window/ewm.py
+++ b/pandas/core/window/ewm.py
@@ -314,7 +314,7 @@ def cov(self, other=None, pairwise=None, bias=False, **kwargs):
inputs. In the case of missing elements, only complete pairwise
observations will be used.
bias : bool, default False
- Use a standard estimation bias correction
+ Use a standard estimation bias correction.
**kwargs
Keyword arguments to be passed into func.
"""
diff --git a/pandas/io/excel/_base.py b/pandas/io/excel/_base.py
index 553334407d12e..12dad0c6c79d3 100644
--- a/pandas/io/excel/_base.py
+++ b/pandas/io/excel/_base.py
@@ -528,8 +528,10 @@ def parse(
class ExcelWriter(metaclass=abc.ABCMeta):
"""
- Class for writing DataFrame objects into excel sheets, default is to use
- xlwt for xls, openpyxl for xlsx. See DataFrame.to_excel for typical usage.
+ Class for writing DataFrame objects into excel sheets.
+
+ Default is to use xlwt for xls, openpyxl for xlsx.
+ See DataFrame.to_excel for typical usage.
Parameters
----------
@@ -543,7 +545,7 @@ class ExcelWriter(metaclass=abc.ABCMeta):
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
datetime_format : str, default None
Format string for datetime objects written into Excel files.
- (e.g. 'YYYY-MM-DD HH:MM:SS')
+ (e.g. 'YYYY-MM-DD HH:MM:SS').
mode : {'w', 'a'}, default 'w'
File mode to use (write or append).
diff --git a/pandas/io/formats/style.py b/pandas/io/formats/style.py
index 0c9d2d54d3065..a5b05c4a6a9be 100644
--- a/pandas/io/formats/style.py
+++ b/pandas/io/formats/style.py
@@ -73,7 +73,7 @@ class Styler:
number and ```` is the column number.
na_rep : str, optional
Representation for missing values.
- If ``na_rep`` is None, no special formatting is applied
+ If ``na_rep`` is None, no special formatting is applied.
.. versionadded:: 1.0.0
@@ -429,13 +429,13 @@ def format(self, formatter, subset=None, na_rep: Optional[str] = None):
Parameters
----------
formatter : str, callable, dict or None
- If ``formatter`` is None, the default formatter is used
+ If ``formatter`` is None, the default formatter is used.
subset : IndexSlice
An argument to ``DataFrame.loc`` that restricts which elements
``formatter`` is applied to.
na_rep : str, optional
Representation for missing values.
- If ``na_rep`` is None, no special formatting is applied
+ If ``na_rep`` is None, no special formatting is applied.
.. versionadded:: 1.0.0
diff --git a/pandas/io/sql.py b/pandas/io/sql.py
index 47805207862f0..1b0f962328c43 100644
--- a/pandas/io/sql.py
+++ b/pandas/io/sql.py
@@ -363,7 +363,7 @@ def read_sql(
Using SQLAlchemy makes it possible to use any DB supported by that
library. If a DBAPI2 object, only sqlite3 is supported. The user is responsible
for engine disposal and connection closure for the SQLAlchemy connectable. See
- `here `_
+ `here `_.
index_col : str or list of strings, optional, default: None
Column(s) to set as index(MultiIndex).
coerce_float : bool, default True