diff --git a/doc/source/getting_started/comparison/comparison_with_sql.rst b/doc/source/getting_started/comparison/comparison_with_sql.rst index 366fdd546f58b..6a03c06de3699 100644 --- a/doc/source/getting_started/comparison/comparison_with_sql.rst +++ b/doc/source/getting_started/comparison/comparison_with_sql.rst @@ -49,6 +49,20 @@ With pandas, column selection is done by passing a list of column names to your Calling the DataFrame without the list of column names would display all columns (akin to SQL's ``*``). +In SQL, you can add a calculated column: + +.. code-block:: sql + + SELECT *, tip/total_bill as tip_rate + FROM tips + LIMIT 5; + +With pandas, you can use the :meth:`DataFrame.assign` method of a DataFrame to append a new column: + +.. ipython:: python + + tips.assign(tip_rate=tips['tip'] / tips['total_bill']).head(5) + WHERE ----- Filtering in SQL is done via a WHERE clause.