From 7e3a4fe2fd0abc676a09809b5a722cb889f352bc Mon Sep 17 00:00:00 2001 From: Seuss27 Date: Tue, 18 Dec 2018 15:32:51 -0500 Subject: [PATCH] DOC: Fixes additional flake8 issues in whatsnew v0.14.0 #24240 Fixed an indentation error that revealed more flake8 issues. --- doc/source/whatsnew/v0.14.0.rst | 39 +++++++++++++++++++-------------- 1 file changed, 23 insertions(+), 16 deletions(-) diff --git a/doc/source/whatsnew/v0.14.0.rst b/doc/source/whatsnew/v0.14.0.rst index ecb062c7d3680..d61b9a40438f8 100644 --- a/doc/source/whatsnew/v0.14.0.rst +++ b/doc/source/whatsnew/v0.14.0.rst @@ -824,22 +824,29 @@ Enhancements .. ipython:: python - import datetime - df = pd.DataFrame({ - 'Branch' : 'A A A A A B'.split(), - 'Buyer': 'Carl Mark Carl Carl Joe Joe'.split(), - 'Quantity': [1, 3, 5, 1, 8, 1], - 'Date' : [datetime.datetime(2013,11,1,13,0), datetime.datetime(2013,9,1,13,5), - datetime.datetime(2013,10,1,20,0), datetime.datetime(2013,10,2,10,0), - datetime.datetime(2013,11,1,20,0), datetime.datetime(2013,10,2,10,0)], - 'PayDay' : [datetime.datetime(2013,10,4,0,0), datetime.datetime(2013,10,15,13,5), - datetime.datetime(2013,9,5,20,0), datetime.datetime(2013,11,2,10,0), - datetime.datetime(2013,10,7,20,0), datetime.datetime(2013,9,5,10,0)]}) - df - - pivot_table(df, index=Grouper(freq='M', key='Date'), - columns=Grouper(freq='M', key='PayDay'), - values='Quantity', aggfunc=np.sum) + import datetime + df = pd.DataFrame({ + 'Branch': 'A A A A A B'.split(), + 'Buyer': 'Carl Mark Carl Carl Joe Joe'.split(), + 'Quantity': [1, 3, 5, 1, 8, 1], + 'Date': [datetime.datetime(2013, 11, 1, 13, 0), + datetime.datetime(2013, 9, 1, 13, 5), + datetime.datetime(2013, 10, 1, 20, 0), + datetime.datetime(2013, 10, 2, 10, 0), + datetime.datetime(2013, 11, 1, 20, 0), + datetime.datetime(2013, 10, 2, 10, 0)], + 'PayDay': [datetime.datetime(2013, 10, 4, 0, 0), + datetime.datetime(2013, 10, 15, 13, 5), + datetime.datetime(2013, 9, 5, 20, 0), + datetime.datetime(2013, 11, 2, 10, 0), + datetime.datetime(2013, 10, 7, 20, 0), + datetime.datetime(2013, 9, 5, 10, 0)]}) + df + + df.pivot_table(values='Quantity', + index=pd.Grouper(freq='M', key='Date'), + columns=pd.Grouper(freq='M', key='PayDay'), + aggfunc=np.sum) - Arrays of strings can be wrapped to a specified width (``str.wrap``) (:issue:`6999`) - Add :meth:`~Series.nsmallest` and :meth:`Series.nlargest` methods to Series, See :ref:`the docs ` (:issue:`3960`)