From 6bc4ce55f3c8fddb84414442740bea0911743b35 Mon Sep 17 00:00:00 2001 From: Fabian Haase Date: Sun, 25 Nov 2018 15:53:39 +0100 Subject: [PATCH] Fix PEP-8 issues in timedeltas.rst Signed-off-by: Fabian Haase --- doc/source/timedeltas.rst | 42 +++++++++++++++++++-------------------- 1 file changed, 21 insertions(+), 21 deletions(-) diff --git a/doc/source/timedeltas.rst b/doc/source/timedeltas.rst index e602e45784f4a..8dab39aafbf67 100644 --- a/doc/source/timedeltas.rst +++ b/doc/source/timedeltas.rst @@ -4,18 +4,12 @@ .. ipython:: python :suppress: - import datetime import numpy as np import pandas as pd + np.random.seed(123456) - randn = np.random.randn - randint = np.random.randint np.set_printoptions(precision=4, suppress=True) - pd.options.display.max_rows=15 - import dateutil - import pytz - from dateutil.relativedelta import relativedelta - from pandas.tseries.offsets import * + pd.options.display.max_rows = 15 .. _timedeltas.timedeltas: @@ -37,6 +31,8 @@ You can construct a ``Timedelta`` scalar through various arguments: .. ipython:: python + import datetime + # strings pd.Timedelta('1 days') pd.Timedelta('1 days 00:00:00') @@ -74,13 +70,14 @@ You can construct a ``Timedelta`` scalar through various arguments: .. ipython:: python - pd.Timedelta(Second(2)) + pd.Timedelta(pd.offsets.Second(2)) Further, operations among the scalars yield another scalar ``Timedelta``. .. ipython:: python - pd.Timedelta(Day(2)) + pd.Timedelta(Second(2)) + pd.Timedelta('00:00:00.000123') + pd.Timedelta(pd.offsets.Day(2)) + pd.Timedelta(pd.offsets.Second(2)) +\ + pd.Timedelta('00:00:00.000123') to_timedelta ~~~~~~~~~~~~ @@ -135,8 +132,8 @@ subtraction operations on ``datetime64[ns]`` Series, or ``Timestamps``. .. ipython:: python s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D')) - td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ]) - df = pd.DataFrame(dict(A = s, B = td)) + td = pd.Series([pd.Timedelta(days=i) for i in range(3)]) + df = pd.DataFrame({'A': s, 'B': td}) df df['C'] = df['A'] + df['B'] df @@ -145,8 +142,8 @@ subtraction operations on ``datetime64[ns]`` Series, or ``Timestamps``. s - s.max() s - datetime.datetime(2011, 1, 1, 3, 5) s + datetime.timedelta(minutes=5) - s + Minute(5) - s + Minute(5) + Milli(5) + s + pd.offsets.Minute(5) + s + pd.offsets.Minute(5) + pd.offsets.Milli(5) Operations with scalars from a ``timedelta64[ns]`` series: @@ -184,7 +181,7 @@ Operands can also appear in a reversed order (a singular object operated with a A = s - pd.Timestamp('20120101') - pd.Timedelta('00:05:05') B = s - pd.Series(pd.date_range('2012-1-2', periods=3, freq='D')) - df = pd.DataFrame(dict(A=A, B=B)) + df = pd.DataFrame({'A': A, 'B': B}) df df.min() @@ -232,7 +229,8 @@ Numeric reduction operation for ``timedelta64[ns]`` will return ``Timedelta`` ob .. ipython:: python - y2 = pd.Series(pd.to_timedelta(['-1 days +00:00:05', 'nat', '-1 days +00:00:05', '1 days'])) + y2 = pd.Series(pd.to_timedelta(['-1 days +00:00:05', 'nat', + '-1 days +00:00:05', '1 days'])) y2 y2.mean() y2.median() @@ -250,8 +248,10 @@ Note that division by the NumPy scalar is true division, while astyping is equiv .. ipython:: python - td = pd.Series(pd.date_range('20130101', periods=4)) - \ - pd.Series(pd.date_range('20121201', periods=4)) + december = pd.Series(pd.date_range('20121201', periods=4)) + january = pd.Series(pd.date_range('20130101', periods=4)) + td = january - december + td[2] += datetime.timedelta(minutes=5, seconds=3) td[3] = np.nan td @@ -360,8 +360,8 @@ or ``np.timedelta64`` objects. Passing ``np.nan/pd.NaT/nat`` will represent miss .. ipython:: python - pd.TimedeltaIndex(['1 days', '1 days, 00:00:05', - np.timedelta64(2,'D'), datetime.timedelta(days=2,seconds=2)]) + pd.TimedeltaIndex(['1 days', '1 days, 00:00:05', np.timedelta64(2, 'D'), + datetime.timedelta(days=2, seconds=2)]) The string 'infer' can be passed in order to set the frequency of the index as the inferred frequency upon creation: @@ -458,7 +458,7 @@ Similarly to frequency conversion on a ``Series`` above, you can convert these i .. ipython:: python - tdi / np.timedelta64(1,'s') + tdi / np.timedelta64(1, 's') tdi.astype('timedelta64[s]') Scalars type ops work as well. These can potentially return a *different* type of index.