diff --git a/ci/travis-27.yaml b/ci/travis-27.yaml index 3e94f334174e6..9c0347de9adfb 100644 --- a/ci/travis-27.yaml +++ b/ci/travis-27.yaml @@ -29,6 +29,7 @@ dependencies: - PyCrypto - pymysql=0.6.3 - pytables + - blosc=1.14.3 - python-blosc - python-dateutil=2.5.0 - python=2.7* diff --git a/pandas/tests/extension/integer/test_integer.py b/pandas/tests/extension/integer/test_integer.py index f1c833a68c66c..e2248285fd2a0 100644 --- a/pandas/tests/extension/integer/test_integer.py +++ b/pandas/tests/extension/integer/test_integer.py @@ -770,7 +770,7 @@ def test_groupby_mean_included(): df = pd.DataFrame({ "A": ['a', 'b', 'b'], "B": [1, None, 3], - "C": IntegerArray([1, None, 3], dtype='Int64'), + "C": integer_array([1, None, 3], dtype='Int64'), }) result = df.groupby("A").sum() @@ -784,7 +784,7 @@ def test_groupby_mean_included(): def test_astype_nansafe(): # https://github.com/pandas-dev/pandas/pull/22343 - arr = IntegerArray([np.nan, 1, 2], dtype="Int8") + arr = integer_array([np.nan, 1, 2], dtype="Int8") with tm.assert_raises_regex( ValueError, 'cannot convert float NaN to integer'): diff --git a/pandas/tests/frame/test_block_internals.py b/pandas/tests/frame/test_block_internals.py index d096daaa0b664..3fe1c84174acb 100644 --- a/pandas/tests/frame/test_block_internals.py +++ b/pandas/tests/frame/test_block_internals.py @@ -12,7 +12,7 @@ from pandas import (DataFrame, Series, Timestamp, date_range, compat, option_context, Categorical) -from pandas.core.arrays import IntegerArray, IntervalArray +from pandas.core.arrays import IntervalArray, integer_array from pandas.compat import StringIO import pandas as pd @@ -440,9 +440,9 @@ def test_get_numeric_data(self): def test_get_numeric_data_extension_dtype(self): # GH 22290 df = DataFrame({ - 'A': IntegerArray([-10, np.nan, 0, 10, 20, 30], dtype='Int64'), + 'A': integer_array([-10, np.nan, 0, 10, 20, 30], dtype='Int64'), 'B': Categorical(list('abcabc')), - 'C': IntegerArray([0, 1, 2, 3, np.nan, 5], dtype='UInt8'), + 'C': integer_array([0, 1, 2, 3, np.nan, 5], dtype='UInt8'), 'D': IntervalArray.from_breaks(range(7))}) result = df._get_numeric_data() expected = df.loc[:, ['A', 'C']]