diff --git a/pandas/core/groupby/groupby.py b/pandas/core/groupby/groupby.py index 3f84fa0f0670e..61dadd833be35 100644 --- a/pandas/core/groupby/groupby.py +++ b/pandas/core/groupby/groupby.py @@ -1168,7 +1168,12 @@ def var(self, ddof=1, *args, **kwargs): """ nv.validate_groupby_func('var', args, kwargs) if ddof == 1: - return self._cython_agg_general('var', **kwargs) + try: + return self._cython_agg_general('var', **kwargs) + except Exception: + f = lambda x: x.var(ddof=ddof, **kwargs) + with _group_selection_context(self): + return self._python_agg_general(f) else: f = lambda x: x.var(ddof=ddof, **kwargs) with _group_selection_context(self): diff --git a/pandas/core/resample.py b/pandas/core/resample.py index 4a3625b2d7a2d..03ce6852b58d0 100644 --- a/pandas/core/resample.py +++ b/pandas/core/resample.py @@ -1043,7 +1043,8 @@ def _downsample(self, how, **kwargs): if is_subperiod(ax.freq, self.freq): # Downsampling - return self._groupby_and_aggregate(how, grouper=self.grouper) + return self._groupby_and_aggregate(how, grouper=self.grouper, + **kwargs) elif is_superperiod(ax.freq, self.freq): if how == 'ohlc': # GH #13083 @@ -1051,7 +1052,8 @@ def _downsample(self, how, **kwargs): # for pure aggregating/reducing methods # OHLC reduces along the time dimension, but creates multiple # values for each period -> handle by _groupby_and_aggregate() - return self._groupby_and_aggregate(how, grouper=self.grouper) + return self._groupby_and_aggregate(how, grouper=self.grouper, + **kwargs) return self.asfreq() elif ax.freq == self.freq: return self.asfreq()