diff --git a/pandas/core/frame.py b/pandas/core/frame.py index d4ce8dc166b09..22677b19192e1 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -7089,6 +7089,9 @@ def quantile(self, q=0.5, axis=0, numeric_only=True, 0 <= q <= 1, the quantile(s) to compute axis : {0, 1, 'index', 'columns'} (default 0) 0 or 'index' for row-wise, 1 or 'columns' for column-wise + numeric_only : boolean, default True + If False, the quantile of datetime and timedelta data will be + computed as well interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.18.0 @@ -7116,7 +7119,7 @@ def quantile(self, q=0.5, axis=0, numeric_only=True, -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), - columns=['a', 'b']) + columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 @@ -7126,6 +7129,20 @@ def quantile(self, q=0.5, axis=0, numeric_only=True, 0.1 1.3 3.7 0.5 2.5 55.0 + Specifying `numeric_only=False` will also compute the quantile of + datetime and timedelta data. + + >>> df = pd.DataFrame({'A': [1, 2], + 'B': [pd.Timestamp('2010'), + pd.Timestamp('2011')], + 'C': [pd.Timedelta('1 days'), + pd.Timedelta('2 days')]}) + >>> df.quantile(0.5, numeric_only=False) + A 1.5 + B 2010-07-02 12:00:00 + C 1 days 12:00:00 + Name: 0.5, dtype: object + See Also -------- pandas.core.window.Rolling.quantile