diff --git a/pandas/tests/extension/base/methods.py b/pandas/tests/extension/base/methods.py index f9f079cb21858..430c571aab0a4 100644 --- a/pandas/tests/extension/base/methods.py +++ b/pandas/tests/extension/base/methods.py @@ -90,7 +90,7 @@ def test_factorize(self, data_for_grouping, na_sentinel): na_sentinel=na_sentinel) expected_labels = np.array([0, 0, na_sentinel, na_sentinel, 1, 1, 0, 2], - dtype='int64') + dtype=np.intp) expected_uniques = data_for_grouping.take([0, 4, 7]) tm.assert_numpy_array_equal(labels, expected_labels) diff --git a/pandas/tests/frame/test_analytics.py b/pandas/tests/frame/test_analytics.py index 7949636fcafbb..2763fcc2183d2 100644 --- a/pandas/tests/frame/test_analytics.py +++ b/pandas/tests/frame/test_analytics.py @@ -17,7 +17,7 @@ from pandas.compat import lrange, product, PY35 from pandas import (compat, isna, notna, DataFrame, Series, MultiIndex, date_range, Timestamp, Categorical, - _np_version_under1p15) + _np_version_under1p12, _np_version_under1p15) import pandas as pd import pandas.core.nanops as nanops import pandas.core.algorithms as algorithms @@ -2146,6 +2146,9 @@ def test_dot(self): @pytest.mark.skipif(not PY35, reason='matmul supported for Python>=3.5') + @pytest.mark.xfail( + _np_version_under1p12, + reason="unpredictable return types under numpy < 1.12") def test_matmul(self): # matmul test is for GH #10259 a = DataFrame(np.random.randn(3, 4), index=['a', 'b', 'c'],