diff --git a/pandas/core/generic.py b/pandas/core/generic.py index 397726181d2fb..7a5c3989089cc 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -699,18 +699,108 @@ def pop(self, item): def squeeze(self, axis=None): """ - Squeeze length 1 dimensions. + Squeeze 1 dimensional axis objects into scalars. + + Series or DataFrames with a single element are squeezed to a scalar. + DataFrames with a single column or a single row are squeezed to a + Series. Otherwise the object is unchanged. + + This method is most useful when you don't know if your + object is a Series or DataFrame, but you do know it has just a single + column. In that case you can safely call `squeeze` to ensure you have a + Series. Parameters ---------- - axis : None, integer or string axis name, optional - The axis to squeeze if 1-sized. + axis : axis : {0 or ‘index’, 1 or ‘columns’, None}, default None + A specific axis to squeeze. By default, all length-1 axes are + squeezed. .. versionadded:: 0.20.0 Returns ------- - scalar if 1-sized, else original object + DataFrame, Series, or scalar + The projection after squeezing `axis` or all the axes. + + See Also + -------- + Series.iloc : Integer-location based indexing for selecting scalars + DataFrame.iloc : Integer-location based indexing for selecting Series + Series.to_frame : Inverse of DataFrame.squeeze for a + single-column DataFrame. + + Examples + -------- + >>> primes = pd.Series([2, 3, 5, 7]) + + Slicing might produce a Series with a single value: + + >>> even_primes = primes[primes % 2 == 0] + >>> even_primes + 0 2 + dtype: int64 + + >>> even_primes.squeeze() + 2 + + Squeezing objects with more than one value in every axis does nothing: + + >>> odd_primes = primes[primes % 2 == 1] + >>> odd_primes + 1 3 + 2 5 + 3 7 + dtype: int64 + + >>> odd_primes.squeeze() + 1 3 + 2 5 + 3 7 + dtype: int64 + + Squeezing is even more effective when used with DataFrames. + + >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) + >>> df + a b + 0 1 2 + 1 3 4 + + Slicing a single column will produce a DataFrame with the columns + having only one value: + + >>> df_a = df[['a']] + >>> df_a + a + 0 1 + 1 3 + + So the columns can be squeezed down, resulting in a Series: + + >>> df_a.squeeze('columns') + 0 1 + 1 3 + Name: a, dtype: int64 + + Slicing a single row from a single column will produce a single + scalar DataFrame: + + >>> df_0a = df.loc[df.index < 1, ['a']] + >>> df_0a + a + 0 1 + + Squeezing the rows produces a single scalar Series: + + >>> df_0a.squeeze('rows') + a 1 + Name: 0, dtype: int64 + + Squeezing all axes wil project directly into a scalar: + + >>> df_0a.squeeze() + 1 """ axis = (self._AXIS_NAMES if axis is None else (self._get_axis_number(axis),))