diff --git a/pandas/core/generic.py b/pandas/core/generic.py index c1964025eff26..a75e3960cda16 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -8348,7 +8348,7 @@ def abs(self): def describe(self, percentiles=None, include=None, exclude=None): """ - Generates descriptive statistics that summarize the central tendency, + Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding ``NaN`` values. @@ -8392,7 +8392,18 @@ def describe(self, percentiles=None, include=None, exclude=None): Returns ------- - summary: Series/DataFrame of summary statistics + Series or DataFrame + Summary statistics of the Series or Dataframe provided. + + See Also + -------- + DataFrame.count: Count number of non-NA/null observations. + DataFrame.max: Maximum of the values in the object. + DataFrame.min: Minimum of the values in the object. + DataFrame.mean: Mean of the values. + DataFrame.std: Standard deviation of the obersvations. + DataFrame.select_dtypes: Subset of a DataFrame including/excluding + columns based on their dtype. Notes ----- @@ -8436,6 +8447,7 @@ def describe(self, percentiles=None, include=None, exclude=None): 50% 2.0 75% 2.5 max 3.0 + dtype: float64 Describing a categorical ``Series``. @@ -8466,9 +8478,9 @@ def describe(self, percentiles=None, include=None, exclude=None): Describing a ``DataFrame``. By default only numeric fields are returned. - >>> df = pd.DataFrame({ 'object': ['a', 'b', 'c'], - ... 'numeric': [1, 2, 3], - ... 'categorical': pd.Categorical(['d','e','f']) + >>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), + ... 'numeric': [1, 2, 3], + ... 'object': ['a', 'b', 'c'] ... }) >>> df.describe() numeric @@ -8554,7 +8566,7 @@ def describe(self, percentiles=None, include=None, exclude=None): Excluding object columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.object]) - categorical numeric + categorical numeric count 3 3.0 unique 3 NaN top f NaN @@ -8566,15 +8578,6 @@ def describe(self, percentiles=None, include=None, exclude=None): 50% NaN 2.0 75% NaN 2.5 max NaN 3.0 - - See Also - -------- - DataFrame.count - DataFrame.max - DataFrame.min - DataFrame.mean - DataFrame.std - DataFrame.select_dtypes """ if self.ndim >= 3: msg = "describe is not implemented on Panel objects."