diff --git a/pandas/io/parsers.py b/pandas/io/parsers.py index 9ad992c434984..6801e8935e079 100755 --- a/pandas/io/parsers.py +++ b/pandas/io/parsers.py @@ -54,7 +54,7 @@ class ParserWarning(Warning): Skip spaces after delimiter escapechar : string (length 1), default None One-character string used to escape delimiter when quoting is QUOTE_NONE. -dtype : Type name or dict of column -> type +dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python') compression : {'gzip', 'bz2', 'infer', None}, default 'infer' @@ -65,7 +65,7 @@ class ParserWarning(Warning): dialect : string or csv.Dialect instance, default None If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details -header : int, list of ints +header : int, list of ints, default 'infer' Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no ``names`` passed, otherwise ``None``. Explicitly pass ``header=0`` to be able to replace existing names. The header can be @@ -74,7 +74,7 @@ class ParserWarning(Warning): skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so header=0 denotes the first line of data rather than the first line of the file. -skiprows : list-like or integer +skiprows : list-like or integer, default None Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file index_col : int or sequence or False, default None @@ -82,7 +82,7 @@ class ParserWarning(Warning): MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names) -names : array-like +names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None prefix : string, default None @@ -90,14 +90,14 @@ class ParserWarning(Warning): na_values : str, list-like or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values -true_values : list +true_values : list, default None Values to consider as True -false_values : list +false_values : list, default None Values to consider as False keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to -parse_dates : boolean, list of ints or names, list of lists, or dict +parse_dates : boolean, list of ints or names, list of lists, or dict, default False If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. @@ -106,7 +106,7 @@ class ParserWarning(Warning): keep_date_col : boolean, default False If True and parse_dates specifies combining multiple columns then keep the original columns. -date_parser : function +date_parser : function, default None Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different @@ -154,7 +154,7 @@ class ParserWarning(Warning): Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file -usecols : array-like +usecols : array-like, default None Return a subset of the columns. Results in much faster parsing time and lower memory usage. mangle_dupe_cols : boolean, default True