Skip to content

BUG: random crash / hang when calculating rolling sum #59121

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
2 of 3 tasks
e271p314 opened this issue Jun 27, 2024 · 2 comments
Closed
2 of 3 tasks

BUG: random crash / hang when calculating rolling sum #59121

e271p314 opened this issue Jun 27, 2024 · 2 comments
Labels
Bug Needs Triage Issue that has not been reviewed by a pandas team member

Comments

@e271p314
Copy link

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import numpy as np
import pandas as pd

def func():
    cols = ['A', 'B', 'C']
    df = pd.DataFrame({c: np.random.randn(500000) for c in cols})
    sec_lst = [60 * m for m in range(1, 10)]
    sec_lst += [60 * m for m in range(10, 30, 5)]
    sec_lst += [60 * m for m in range(30, 60, 10)]
    sec_lst += [60 * m for m in range(60, 120, 15)]
    sec_lst += [60 * m for m in range(120, 180, 20)]
    sec_lst += [60 * m for m in range(180, 600, 30)]
    sec_lst += [3600 * h for h in range(10, 24)]
    df_sum_dict = {}
    for sec in sec_lst:
        for c in cols:
            try:
                df_sum_dict[f'{c}{sec}'] = df[c].rolling(sec).sum()
            except Exception as e:
                print(f"Error processing column {c} with window {sec}: {e}")
                continue

func()

Issue Description

running with this loop results in the following output (Terminated is the output when I kill it because the script hangs, should run few seconds at most)

$ for i in $(seq 1 100); do python test.py $i; if [ $? -ne 0 ]; then echo $i; fi; done
Segmentation fault (core dumped)
6
Terminated
24
Terminated
41
Segmentation fault (core dumped)
42
Segmentation fault (core dumped)
43
Terminated
44
Segmentation fault (core dumped)
45
Terminated
64
Terminated
65
Segmentation fault (core dumped)
74
Segmentation fault (core dumped)
95

Expected Behavior

it should not crash or hang

Installed Versions

INSTALLED VERSIONS

commit : d9cdd2e
python : 3.12.3.final.0
python-bits : 64
OS : Linux
OS-release : 6.8.0-35-generic
Version : #35-Ubuntu SMP PREEMPT_DYNAMIC Mon May 20 15:51:52 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 70.0.0
pip : 24.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.4
IPython : 8.25.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : 1.4.0
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.6.0
gcsfs : 2024.6.0
matplotlib : 3.9.0
numba : 0.59.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 16.1.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.13.1
sqlalchemy : 2.0.30
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None

@e271p314 e271p314 added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Jun 27, 2024
@chaoyihu
Copy link
Contributor

Hi, thanks for raising the issue! I was unable to reproduce the random crash/hang you experienced in any of the following envs:

Installed versions 1 (main)

commit                : 5e972376fd5e4ab033f9922b546495d8efc9fda5
python                : 3.10.14.final.0
python-bits           : 64
OS                    : Linux
OS-release            : 6.5.0-41-generic
Version               : #41~22.04.2-Ubuntu SMP PREEMPT_DYNAMIC Mon Jun  3 11:32:55 UTC 2
machine               : x86_64
processor             : x86_64
byteorder             : little
LC_ALL                : None
LANG                  : en_US.UTF-8
LOCALE                : en_US.UTF-8

pandas : 3.0.0.dev0+1026.g5e972376fd
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 69.0.3
pip : 24.1
Cython : 3.0.8
pytest : 8.0.2
hypothesis : 6.103.2
sphinx : 7.3.7
blosc : None
feather : None
xlsxwriter : 3.1.9
lxml.etree : 5.2.2
html5lib : 1.1
pymysql : 1.4.6
psycopg2 : 2.9.9
jinja2 : 3.1.2
IPython : 8.12.3
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : 1.4.0
fastparquet : 2024.5.0
fsspec : 2024.6.0
gcsfs : 2024.6.0
matplotlib : 3.9.0
numba : 0.59.1
numexpr : 2.10.0
odfpy : None
openpyxl : 3.1.4
pyarrow : 15.0.2
pyreadstat : 1.2.7
python-calamine : None
pyxlsb : 1.0.10
s3fs : 2024.6.0
scipy : 1.12.0
sqlalchemy : 2.0.31
tables : 3.9.2
tabulate : 0.9.0
xarray : 2024.6.0
xlrd : 2.0.1
zstandard : 0.22.0
tzdata : 2024.1
qtpy : 2.4.1
pyqt5 : None

Installed versions 2 (close to the one provided in issue description)

commit                : d9cdd2ee5a58015ef6f4d15c7226110c9aab8140
python                : 3.12.3.final.0
python-bits           : 64
OS                    : Linux
OS-release            : 6.5.0-41-generic
Version               : #41~22.04.2-Ubuntu SMP PREEMPT_DYNAMIC Mon Jun  3 11:32:55 UTC 2
machine               : x86_64
processor             : x86_64
byteorder             : little
LC_ALL                : None
LANG                  : en_US.UTF-8
LOCALE                : en_US.UTF-8

pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0
setuptools : 70.1.1
pip : 24.0
Cython : 3.0.10
pytest : 8.2.2
hypothesis : 6.104.1
sphinx : 7.3.7
blosc : None
feather : None
xlsxwriter : 3.1.9
lxml.etree : 5.2.2
html5lib : 1.1
pymysql : 1.4.6
psycopg2 : 2.9.9
jinja2 : 3.1.4
IPython : 8.25.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : 1.4.0
dataframe-api-compat : None
fastparquet : 2024.5.0
fsspec : 2024.6.0
gcsfs : 2024.6.0
matplotlib : 3.8.4
numba : 0.60.0
numexpr : 2.10.0
odfpy : None
openpyxl : 3.1.4
pandas_gbq : None
pyarrow : 16.1.0
pyreadstat : 1.2.7
python-calamine : None
pyxlsb : 1.0.10
s3fs : 2024.6.0
scipy : 1.14.0
sqlalchemy : 2.0.31
tables : 3.9.2
tabulate : 0.9.0
xarray : 2024.6.0
xlrd : 2.0.1
zstandard : 0.22.0
tzdata : 2024.1
qtpy : None
pyqt5 : None

Since the reproducible script here is self-contained and works on my machine, I suspect this is not a problem with pandas or any of its dependencies. My intuition would be that the Segmentation fault (core dumped) errors here suggest low memory or even hardware issues - here is a potentially relevant post.

I would suggest double-checking memory usage / running the code on a different machine to see if the error persists.

@e271p314
Copy link
Author

Wow! you are right!
sudo swapoff -a
solved the problem for me, I would never never guess, thank you very much!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Needs Triage Issue that has not been reviewed by a pandas team member
Projects
None yet
Development

No branches or pull requests

2 participants