BUG: [pyarrow] Bizarre overflow error when subtracting two identical Index
objects.
#59082
Closed
2 of 3 tasks
Labels
Arrow
pyarrow functionality
Bug
Numeric Operations
Arithmetic, Comparison, and Logical operations
Upstream issue
Issue related to pandas dependency
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
This one is absolutely baffling to me. Two
Index
objects, despite satisfyingassert_index_equal
, raise an exception when subtracting each other. I guessassert_index_equal
must be omitting some internal differences under the hood?It occurs after encoding and decoding a
timestamp[ms][pyarrow]
index to floating and back totimestamp[ms][pyarrow]
, by subtracting and offset and dividing by some frequency.Even more weird is that it makes a difference how we define the unit:
Moreover, manually computing the difference in
pyarrow
works as well:Expected Behavior
Either
assert_index_equal
should show some discrepancy, ordt
andecoded
should behave interchangably.Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.11.7.final.0
python-bits : 64
OS : Linux
OS-release : 6.5.0-41-generic
Version : #41~22.04.2-Ubuntu SMP PREEMPT_DYNAMIC Mon Jun 3 11:32:55 UTC 2
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.2
numpy : 2.0.0
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 70.1.0
pip : 24.1
Cython : None
pytest : 8.2.2
hypothesis : 6.103.5
sphinx : 7.3.7
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.4
IPython : 8.25.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.6.0
gcsfs : None
matplotlib : 3.9.0
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.4
pandas_gbq : None
pyarrow : 16.1.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.13.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: