BUG: Losing information when handling of NoneType
s in pd.json_normalize
#58395
Labels
NoneType
s in pd.json_normalize
#58395
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
When using
pd.json_normalize
I expected to keep the distinction betweenNone
andNaN
cells (or at the very least for the behaviour to be the same regardless of the input.There are 2 scenarios in the example I gave:

Scenario 1 - At least one value for a specific key (resultant column in the df) in the json is not
None
orNaN
.In this case the cells containing
None
are preserved in the final dfScenario 2 - All the values for a key (resultant column in the df) in the json payload are

None
orNaN
.In this case the cells containing
None
are not preserved in the final df, ratherNone
is converted toNaN
The handling of
None
should at the very least be consistent in both scenarios. In my opinion it should retain as much information as possible, so the output of scenario 1 makes the most sense to me.Expected Behavior
I expect to still see a

NoneType
value even when all the cells are eitherNone
orNaN
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.11.9.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.22631
machine : AMD64
processor : Intel64 Family 6 Model 140 Stepping 1, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_Australia.1252
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0
setuptools : 68.2.2
pip : 23.3.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.22.2
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: