We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
>>> s = pd.Series([1, None], dtype="int16[pyarrow]") >>> def my_udf(value): ... return str(value) ... >>> s.apply(my_udf) 0 1.0 1 nan dtype: object >>>
NaN is passed to udf instead of pd.NA, NaN should be impossible for integral type to hold
Expected behavior is behavior from pandas 2.1.4:
>>> s = pd.Series([1, None], dtype="int16[pyarrow]") >>> def my_udf(value): ... return str(value) ... >>> s.apply(my_udf) 0 1 1 <NA> dtype: object >>>
UDF receives pd.NA instead of NaN
commit : d4c8d82 python : 3.11.4.final.0 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.22631 machine : AMD64 processor : Intel64 Family 6 Model 151 Stepping 2, GenuineIntel byteorder : little LC_ALL : None LANG : None LOCALE : English_United States.1252
pandas : 2.2.0rc0 numpy : 1.26.2 pytz : 2023.3.post1 dateutil : 2.8.2 setuptools : 69.0.2 pip : 23.3.1 Cython : None pytest : 7.0.1 hypothesis : None sphinx : 4.2.0 blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : 3.1.2 IPython : 8.19.0 pandas_datareader : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.12.2 bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None gcsfs : None matplotlib : 3.8.2 numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : 14.0.0 pyreadstat : None python-calamine : None pyxlsb : None s3fs : None scipy : 1.11.4 sqlalchemy : None tables : None tabulate : 0.9.0 xarray : None xlrd : None zstandard : None tzdata : 2023.3 qtpy : None pyqt5 : None
The text was updated successfully, but these errors were encountered:
Based on discussion in #56290, it seems it may be an intentional change in 2.2.x compared to 2.1.x.
Sorry, something went wrong.
>>> pd.Series(map(my_udf, s)) 0 1 1 <NA> dtype: object >>>
This gives the expected result, it seems a bit odd, that using apply would give a different result and call the udf with different values.
Yes this was indeed an intentional change to get rid of the annoying behaviour of converting to NumPy object all the time
map
No branches or pull requests
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
NaN is passed to udf instead of pd.NA, NaN should be impossible for integral type to hold
Expected Behavior
Expected behavior is behavior from pandas 2.1.4:
UDF receives pd.NA instead of NaN
Installed Versions
INSTALLED VERSIONS
commit : d4c8d82
python : 3.11.4.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.22631
machine : AMD64
processor : Intel64 Family 6 Model 151 Stepping 2, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 2.2.0rc0
numpy : 1.26.2
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 69.0.2
pip : 23.3.1
Cython : None
pytest : 7.0.1
hypothesis : None
sphinx : 4.2.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.19.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.8.2
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 14.0.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.11.4
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: