PERF: Using Series or DataFrame in grouped iterator leads to significant increase in run time #55541
Closed
3 tasks done
Labels
Duplicate Report
Duplicate issue or pull request
Groupby
Performance
Memory or execution speed performance
Regression
Functionality that used to work in a prior pandas version
Milestone
Pandas version checks
Reproducible Example
Starting from pandas version 2.1.1, accessing a Series or DataFrame within a grouped iterator results in a significant increase in run time.
pandas 2.2.0.dev0+383.g746e5eee860
still exists.Installed Versions
>>> pd.show_versions()
/usr/local/lib/python3.11/site-packages/_distutils_hack/init.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
INSTALLED VERSIONS
commit : e86ed37
python : 3.11.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.49-linuxkit-pr
Version : #1 SMP Thu May 25 07:17:40 UTC 2023
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.1.1
numpy : 1.26.1
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 65.5.1
pip : 23.3
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader : None
bs4 : None
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
Prior Performance
# pip install pandas==2.1.0
The text was updated successfully, but these errors were encountered: