We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
import pandas as pd df = pd.DataFrame({"col": [1, 2, 3]}) key = 2 df.query("col == @key")
Yesterday numexpr released version 2.8.5 where they introduced security checks in expression compiler https://github.com/pydata/numexpr/blame/v2.8.5/numexpr/necompiler.py#L264-L274
Pandas uses names which do not pass these checks, in this particular case the __ check. This code produces
__
ValueError Traceback (most recent call last) Cell In[1], line 4 2 df = pd.DataFrame({"col": [1, 2, 3]}) 3 key = 2 ----> 4 df.query("col == @key") File ~/.local/lib/python3.11/site-packages/pandas/core/frame.py:4434, in DataFrame.query(self, expr, inplace, **kwargs) 4432 kwargs["level"] = kwargs.pop("level", 0) + 1 4433 kwargs["target"] = None -> 4434 res = self.eval(expr, **kwargs) 4436 try: 4437 result = self.loc[res] File ~/.local/lib/python3.11/site-packages/pandas/core/frame.py:4560, in DataFrame.eval(self, expr, inplace, **kwargs) 4557 kwargs["target"] = self 4558 kwargs["resolvers"] = tuple(kwargs.get("resolvers", ())) + resolvers -> 4560 return _eval(expr, inplace=inplace, **kwargs) File ~/.local/lib/python3.11/site-packages/pandas/core/computation/eval.py:357, in eval(expr, parser, engine, local_dict, global_dict, resolvers, level, target, inplace) 355 eng = ENGINES[engine] 356 eng_inst = eng(parsed_expr) --> 357 ret = eng_inst.evaluate() 359 if parsed_expr.assigner is None: 360 if multi_line: File ~/.local/lib/python3.11/site-packages/pandas/core/computation/engines.py:81, in AbstractEngine.evaluate(self) 78 self.result_type, self.aligned_axes = align_terms(self.expr.terms) 80 # make sure no names in resolvers and locals/globals clash ---> 81 res = self._evaluate() 82 return reconstruct_object( 83 self.result_type, res, self.aligned_axes, self.expr.terms.return_type 84 ) File ~/.local/lib/python3.11/site-packages/pandas/core/computation/engines.py:121, in NumExprEngine._evaluate(self) 119 scope = env.full_scope 120 _check_ne_builtin_clash(self.expr) --> 121 return ne.evaluate(s, local_dict=scope) File ~/.local/lib/python3.11/site-packages/numexpr/necompiler.py:943, in evaluate(ex, local_dict, global_dict, out, order, casting, _frame_depth, **kwargs) 941 return re_evaluate(local_dict=local_dict, _frame_depth=_frame_depth) 942 else: --> 943 raise e File ~/.local/lib/python3.11/site-packages/numexpr/necompiler.py:851, in validate(ex, local_dict, global_dict, out, order, casting, _frame_depth, **kwargs) 849 expr_key = (ex, tuple(sorted(context.items()))) 850 if expr_key not in _names_cache: --> 851 _names_cache[expr_key] = getExprNames(ex, context) 852 names, ex_uses_vml = _names_cache[expr_key] 853 arguments = getArguments(names, local_dict, global_dict, _frame_depth=_frame_depth) File ~/.local/lib/python3.11/site-packages/numexpr/necompiler.py:714, in getExprNames(text, context) 713 def getExprNames(text, context): --> 714 ex = stringToExpression(text, {}, context) 715 ast = expressionToAST(ex) 716 input_order = getInputOrder(ast, None) File ~/.local/lib/python3.11/site-packages/numexpr/necompiler.py:274, in stringToExpression(s, types, context) 272 no_whitespace = re.sub(r'\s+', '', s) 273 if _forbidden_re.search(no_whitespace) is not None: --> 274 raise ValueError(f'Expression {s} has forbidden control characters.') 276 old_ctx = expressions._context.get_current_context() 277 try: ValueError: Expression (col) == (__pd_eval_local_key) has forbidden control characters.
Since pandas depends on numexpr>=2.8.0, 2.8.5 is automatically installed on new installations since yesterday.
numexpr>=2.8.0
Code works, no exception
pandas : 2.0.0rc1 numpy : 1.23.4 pytz : 2020.4 dateutil : 2.8.2 setuptools : 66.0.0 pip : 22.0.4 Cython : 3.0.0b1 pytest : 7.1.2 hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : 2.9.5 jinja2 : 3.0.3 IPython : 8.14.0 pandas_datareader: None bs4 : 4.12.2 bottleneck : None brotli : None fastparquet : None fsspec : 2023.6.0 gcsfs : None matplotlib : 3.7.1 numba : None numexpr : 2.8.5 odfpy : None openpyxl : 3.0.7 pandas_gbq : None pyarrow : 10.0.1 pyreadstat : None pyxlsb : None s3fs : None scipy : 1.9.3 snappy : sqlalchemy : 1.4.48 tables : 3.8.0 tabulate : 0.9.0 xarray : None xlrd : 1.2.0 zstandard : 0.20.0 tzdata : None qtpy : None pyqt5 : None
</details>
The text was updated successfully, but these errors were encountered:
Thanks for the report. This looks like a duplicate of #54449
Sorry, something went wrong.
Yeah sorry, did not notice that one
No branches or pull requests
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
Yesterday numexpr released version 2.8.5 where they introduced security checks in expression compiler https://github.com/pydata/numexpr/blame/v2.8.5/numexpr/necompiler.py#L264-L274
Pandas uses names which do not pass these checks, in this particular case the
__
check. This code producesSince pandas depends on
numexpr>=2.8.0
, 2.8.5 is automatically installed on new installations since yesterday.Expected Behavior
Code works, no exception
Installed Versions
pandas : 2.0.0rc1
numpy : 1.23.4
pytz : 2020.4
dateutil : 2.8.2
setuptools : 66.0.0
pip : 22.0.4
Cython : 3.0.0b1
pytest : 7.1.2
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.9.5
jinja2 : 3.0.3
IPython : 8.14.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : None
brotli : None
fastparquet : None
fsspec : 2023.6.0
gcsfs : None
matplotlib : 3.7.1
numba : None
numexpr : 2.8.5
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : 10.0.1
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.9.3
snappy :
sqlalchemy : 1.4.48
tables : 3.8.0
tabulate : 0.9.0
xarray : None
xlrd : 1.2.0
zstandard : 0.20.0
tzdata : None
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: