BUG: pd.Series.apply
/ pd.Series.map
outputs to numpy dtype for a double[pyarrow]
input
#53527
Closed
3 tasks done
Labels
Apply
Apply, Aggregate, Transform, Map
Arrow
pyarrow functionality
Bug
Dtype Conversions
Unexpected or buggy dtype conversions
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
Using the series
.apply()
or.map()
methods, the return dtype isfloat64
Expected Behavior
The return dtype is expected to be the same as the input. In this case it's
double[pyarrow]
Installed Versions
INSTALLED VERSIONS
commit : 965ceca
python : 3.10.11.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.107+
Version : #1 SMP Sat Apr 29 09:15:28 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.0.2
numpy : 1.22.4
pytz : 2022.7.1
dateutil : 2.8.2
setuptools : 67.7.2
pip : 23.1.2
Cython : 0.29.34
pytest : 7.2.2
hypothesis : None
sphinx : 3.5.4
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.2
html5lib : 1.1
pymysql : None
psycopg2 : 2.9.6
jinja2 : 3.1.2
IPython : 7.34.0
pandas_datareader: 0.10.0
bs4 : 4.11.2
bottleneck : None
brotli : None
fastparquet : None
fsspec : 2023.4.0
gcsfs : None
matplotlib : 3.7.1
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : 0.17.9
pyarrow : 9.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.1
snappy : None
sqlalchemy : 2.0.10
tables : 3.8.0
tabulate : 0.8.10
xarray : 2022.12.0
xlrd : 2.0.1
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: