BUG: does not change column type when using .loc & to_datetime #53018
Labels
Bug
Duplicate Report
Duplicate issue or pull request
Needs Triage
Issue that has not been reviewed by a pandas team member
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
In version 2.0.1, when using .loc, there will be no column type conversion.
In version 1.5.3, the column type always changed.
Output on version 2.0.1:
date
0 01/30/2023
1 01/30/2023
2 01/30/2023
------var1.loc------
date object
dtype: object
------var2------
date datetime64[ns, UTC]
dtype: object
Expected Behavior
As of version 1.5.3, the column type must always change to
datetime64[ns, UTC]
Installed Versions
INSTALLED VERSIONS
commit : 37ea63d
python : 3.11.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.20348
machine : AMD64
processor : Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Russian_Russia.1251
pandas : 2.0.1
numpy : 1.24.3
pytz : 2023.2
dateutil : 2.8.2
setuptools : 67.7.2
pip : 23.1.2
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 3.1.0
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.13.1
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: