BUG: to_json/read_json with orient="table" does not preserve types with pd.NA
#51375
Open
2 of 3 tasks
pd.NA
#51375
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
When I have a column consisting of
pd.NA
the data type is initiallyobject
. When I call.to_json(orient="table")
the schema says that the type is "string" (which is probably OK??)When I read the produced json string back using
.read_json
the data dype in the resulting frame isfloat64
Full output of the example
Expected Behavior
The data types should be preserved when doing a roundtrip with orient="table" on both read and write.
Minor detail: The schema appears to say
"pandas_version": 1.4.0
even though the details below says that the install version is1.5.2
. Would expect that1.5.2
was present in the output.Installed Versions
INSTALLED VERSIONS
commit : 8dab54d
python : 3.10.9.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.16.3-microsoft-standard-WSL2
Version : #1 SMP Fri Apr 2 22:23:49 UTC 2021
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.5.2
numpy : 1.24.1
pytz : 2022.7.1
dateutil : 2.8.2
setuptools : 66.0.0
pip : 22.3.1
Cython : None
pytest : 7.2.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.8.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : 1.3.5
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : 2.8.4
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 10.0.1
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.9.3
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : Non
The text was updated successfully, but these errors were encountered: