PERF: DataFrame.update of pandas version is slower than the older version #47392
Closed
2 tasks done
Labels
Duplicate Report
Duplicate issue or pull request
Indexing
Related to indexing on series/frames, not to indexes themselves
Performance
Memory or execution speed performance
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this issue exists on the latest version of pandas.
Reproducible Example
Installed Versions
for latest version:
INSTALLED VERSIONS
commit : 4bfe3d0
python : 3.9.2.final.0
python-bits : 64
OS : Darwin
OS-release : 21.4.0
Version : Darwin Kernel Version 21.4.0: Fri Mar 18 00:45:05 PDT 2022; root:xnu-8020.101.4~15/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.4.2
numpy : 1.22.4
pytz : 2022.1
dateutil : 2.8.2
pip : 20.2.3
setuptools : 49.2.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
markupsafe : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
for older version 1.1.5
pandas : 1.1.5
numpy : 1.22.4
pytz : 2022.1
dateutil : 2.8.2
pip : 20.2.3
setuptools : 49.2.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
Prior Performance
Pandas 1.1.5 result
here is the result from same code example above but run with pandas v1.1.5
1.031
is in seconds.pandas 1.4.2 result
Here is the result from save code example above but run with pandas v.1.4.2
you can see the latest version is almost double in running time than older version.
The text was updated successfully, but these errors were encountered: