Skip to content

BUG: DataFrame.to_records inconsistent data typing for Index vs MultiIndex #47263

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
3 tasks done
lukemanley opened this issue Jun 7, 2022 · 1 comment · Fixed by #47279
Closed
3 tasks done

BUG: DataFrame.to_records inconsistent data typing for Index vs MultiIndex #47263

lukemanley opened this issue Jun 7, 2022 · 1 comment · Fixed by #47279
Labels
Bug Dtype Conversions Unexpected or buggy dtype conversions MultiIndex

Comments

@lukemanley
Copy link
Member

lukemanley commented Jun 7, 2022

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

df = pd.DataFrame({
    1: list("AB"),
    2: list("CD"),
    3: list("EF"),
})

print(df.to_records(index=False).dtype)
print(df.set_index(1).to_records(index=True).dtype)
print(df.set_index([1, 2]).to_records(index=True).dtype)

Issue Description

Inconsistent numpy types for the three versions above. The MultiIndex version does not match the first two:

(numpy.record, [('1', 'O'), ('2', 'O'), ('3', 'O')])
(numpy.record, [('1', 'O'), ('2', 'O'), ('3', 'O')])
(numpy.record, [('1', '<U1'), ('2', '<U1'), ('3', 'O')])

Expected Behavior

I would expect all three cases to result in the same numpy dtypes.

Would changing the MultiIndex behavior to match the first two be acceptable? If so, I will submit a PR.

Installed Versions

INSTALLED VERSIONS

commit : df8acf4
python : 3.8.13.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.16.3-microsoft-standard-WSL2
Version : #1 SMP Fri Apr 2 22:23:49 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.5.0.dev0+867.gdf8acf4201.dirty
numpy : 1.22.4
pytz : 2022.1
dateutil : 2.8.2
setuptools : 62.3.2
pip : 22.1.2
Cython : 0.29.30
pytest : 7.1.2
hypothesis : 6.46.11
sphinx : 4.5.0
blosc : None
feather : None
xlsxwriter : 3.0.3
lxml.etree : 4.9.0
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 8.4.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : 1.3.4
brotli :
fastparquet : 0.8.1
fsspec : 2021.11.0
gcsfs : 2021.11.0
matplotlib : 3.5.2
numba : 0.53.1
numexpr : 2.8.0
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : 8.0.0
pyreadstat : 1.1.7
pyxlsb : None
s3fs : 2021.11.0
scipy : 1.8.1
snappy :
sqlalchemy : 1.4.37
tables : 3.7.0
tabulate : 0.8.9
xarray : 2022.3.0
xlrd : 2.0.1
xlwt : 1.3.0
zstandard : None

@lukemanley lukemanley added Bug Needs Triage Issue that has not been reviewed by a pandas team member Dtype Conversions Unexpected or buggy dtype conversions labels Jun 7, 2022
@lukemanley
Copy link
Member Author

Note that strings are not the only impacted dtype. Here is another example with dates:

import pandas as pd

df = pd.DataFrame({
    1: pd.date_range('2022-01-01', periods=2),
    2: pd.date_range('2022-01-01', periods=2),
    3: pd.date_range('2022-01-01', periods=2),
})

print(df.to_records(index=False).dtype)
print(df.set_index(1).to_records(index=True).dtype)
print(df.set_index([1, 2]).to_records(index=True).dtype)
(numpy.record, [('1', '<M8[ns]'), ('2', '<M8[ns]'), ('3', '<M8[ns]')])
(numpy.record, [('1', '<M8[ns]'), ('2', '<M8[ns]'), ('3', '<M8[ns]')])
(numpy.record, [('1', 'O'), ('2', 'O'), ('3', '<M8[ns]')])

@simonjayhawkins simonjayhawkins added MultiIndex and removed Needs Triage Issue that has not been reviewed by a pandas team member labels Jun 8, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Dtype Conversions Unexpected or buggy dtype conversions MultiIndex
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants