Skip to content

BUG: Series.agg() with axis=1 inconsistent with Series.groupby.agg with axis=1 #46581

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
3 tasks done
kwhkim opened this issue Mar 31, 2022 · 1 comment
Open
3 tasks done
Labels
Apply Apply, Aggregate, Transform, Map Bug

Comments

@kwhkim
Copy link
Contributor

kwhkim commented Mar 31, 2022

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

I must admit there were similar complaints before, here I present my analysis and solution. (ex. API: Signature of UDF methods, Higher Order Methods API)

Reproducible Example

import pandas as pd
import numpy as np
dat = pd.DataFrame({'color':['A', 'A', 'E', 'E', 'J'],
                    'carat':[0.23, 0.21, 0.23, 0.29, 0.31],
                    'x':[3.95, 3.89, 4.05, 4.20, 4.34]},
                  index = [1,2,3,4,5])

dat['carat'].agg(np.mean)
## 0.254
dat['carat'].agg(np.mean, axis=0)
## 0.254
dat['carat'].agg('mean')
## 0.254
dat['carat'].agg(lambda x: np.mean(x))
## 1    0.23
## 2    0.21
## 3    0.23
## 4    0.29
## 5    0.31
## Name: carat, dtype: float64
dat['carat'].agg(lambda x, axis: np.mean(x, axis=axis), axis=0)
## TypeError: <lambda>() missing 1 required positional argument: 'axis'


Compare the result above with the result below

```python
dat['carat'].groupby(dat['color']).agg(np.mean), 
dat['carat'].groupby(dat['color']).agg(np.mean, axis=0), 
dat['carat'].groupby(dat['color']).agg('mean'), 
dat['carat'].groupby(dat['color']).agg(lambda x: np.mean(x)), 
dat['carat'].groupby(dat['color']).agg(lambda x, axis: np.mean(x, axis=axis), axis=0)
## <all the same here>
## color
## A    0.22
## E    0.26
## J    0.31
## Name: carat, dtype: float64,
##
##

Call it bug or inconsistency or poor design?

Issue Description

Basically, in consistency's term, pd.Series.agg() and pd.Series.groupby().agg() should act the same way.

Anyway as I read the the code(the code is in the bottom), I found parameter axis for Series.aggregate() seems useless(or am I missing something here?)

Even if it really needs a named paramter, it'd better be named something like _axis_ to avoid conflicting names with
functions to apply. For example np.mean() has a parameter named axis= and user might name a parameter axis (for example, lambda x, axis: np.mean(x, axis=axis)).

As far as I know, we do not need axis=0 and self._get_axis_number(axis) for Series at least(DataFrame has similar signature, and I think it should be renamed to something like _axis_ or _axis or __axis__).

So I propose deleting axis parameter from Series.aggregate and renaming axis to _axis for DataFrame.aggreate.

    def aggregate(self, func=None, axis=0, *args, **kwargs):
        # Validate the axis parameter
        self._get_axis_number(axis)

        # if func is None, will switch to user-provided "named aggregation" kwargs
        if func is None:
            func = dict(kwargs.items())

        op = SeriesApply(self, func, convert_dtype=False, args=args, kwargs=kwargs)
        result = op.agg()
        return result

Expected Behavior

dat['carat'].groupby(dat['color']).agg(lambda x: np.mean(x)) and
dat['carat']..agg(lambda x: np.mean(x)) works similarly

Installed Versions

INSTALLED VERSIONS

commit : 06d2301
python : 3.8.12.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19044
machine : AMD64
processor : Intel64 Family 6 Model 94 Stepping 3, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Korean_Korea.949

pandas : 1.4.1
numpy : 1.22.2
pytz : 2021.3
dateutil : 2.8.2
pip : 22.0.3
setuptools : 60.9.3
Cython : 0.29.28
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.8.0
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 8.0.1
pandas_datareader: None
bs4 : 4.10.0
bottleneck : None
fastparquet : None
fsspec : 2022.02.0
gcsfs : None
matplotlib : 3.5.1
numba : None
numexpr : 2.8.1
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : 1.0.9
s3fs : None
scipy : 1.8.0
sqlalchemy : None
tables : 3.7.0
tabulate : None
xarray : None
xlrd : 2.0.1
xlwt : None
zstandard : None

@kwhkim kwhkim added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Mar 31, 2022
@jackgoldsmith4
Copy link
Contributor

I think docs clarifying the axis parameter (#47109) might clear up some of the confusion here

@mroeschke mroeschke changed the title BUG: Possible bug with Series.agg() BUG: Series.agg() with axis=1 inconsistent with Series.groupby.agg with axis=1 Jul 6, 2022
@mroeschke mroeschke added Apply Apply, Aggregate, Transform, Map and removed Needs Triage Issue that has not been reviewed by a pandas team member labels Jul 6, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Apply Apply, Aggregate, Transform, Map Bug
Projects
None yet
Development

No branches or pull requests

3 participants