You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am not entirely sure where these are generated but we should fix in the doc-strings if this where they are coming from.
=============================== warnings summary ===============================
../../../../../usr/share/miniconda/envs/pandas-dev/lib/python3.8/importlib/__init__.py:127
/usr/share/miniconda/envs/pandas-dev/lib/python3.8/importlib/__init__.py:127: FutureWarning: pandas.core.index is deprecated and will be removed in a future version. The public classes are available in the top-level namespace.
return _bootstrap._gcd_import(name[level:], package, level)
pandas/core/generic.py::pandas.core.generic.NDFrame.empty
<doctest pandas.core.generic.NDFrame.empty[10]>:1: FutureWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
pandas/core/generic.py::pandas.core.generic.NDFrame.xs
<doctest pandas.core.generic.NDFrame.xs[5]>:1: PerformanceWarning: indexing past lexsort depth may impact performance.
pandas/core/arrays/categorical.py::pandas.core.arrays.categorical.Categorical.replace
<doctest pandas.core.arrays.categorical.Categorical.replace[1]>:1: FutureWarning: Categorical.replace is deprecated and will be removed in a future version. Use Series.replace directly instead.
pandas/core/dtypes/common.py::pandas.core.dtypes.common.is_categorical
<doctest pandas.core.dtypes.common.is_categorical[0]>:1: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead.
pandas/core/dtypes/common.py::pandas.core.dtypes.common.is_categorical
<doctest pandas.core.dtypes.common.is_categorical[2]>:1: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead.
pandas/core/dtypes/common.py::pandas.core.dtypes.common.is_categorical
<doctest pandas.core.dtypes.common.is_categorical[4]>:1: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead.
pandas/core/dtypes/common.py::pandas.core.dtypes.common.is_extension_type
<doctest pandas.core.dtypes.common.is_extension_type[0]>:1: FutureWarning: 'is_extension_type' is deprecated and will be removed in a future version. Use 'is_extension_array_dtype' instead.
pandas/core/dtypes/common.py::pandas.core.dtypes.common.is_extension_type
<doctest pandas.core.dtypes.common.is_extension_type[3]>:1: FutureWarning: 'is_extension_type' is deprecated and will be removed in a future version. Use 'is_extension_array_dtype' instead.
pandas/core/groupby/generic.py::pandas.core.groupby.generic.DataFrameGroupBy.transform
<doctest pandas.core.groupby.generic.DataFrameGroupBy.transform[2]>:1: FutureWarning: Dropping invalid columns in DataFrameGroupBy.transform is deprecated. In a future version, a TypeError will be raised. Before calling .transform, select only columns which should be valid for the function.
pandas/core/groupby/generic.py::pandas.core.groupby.generic.DataFrameGroupBy.transform
<doctest pandas.core.groupby.generic.DataFrameGroupBy.transform[3]>:1: FutureWarning: Dropping invalid columns in DataFrameGroupBy.transform is deprecated. In a future version, a TypeError will be raised. Before calling .transform, select only columns which should be valid for the function.
pandas/core/groupby/generic.py::pandas.core.groupby.generic.SeriesGroupBy.transform
<doctest pandas.core.groupby.generic.SeriesGroupBy.transform[2]>:1: FutureWarning: Dropping invalid columns in DataFrameGroupBy.transform is deprecated. In a future version, a TypeError will be raised. Before calling .transform, select only columns which should be valid for the function.
pandas/core/groupby/generic.py::pandas.core.groupby.generic.SeriesGroupBy.transform
<doctest pandas.core.groupby.generic.SeriesGroupBy.transform[3]>:1: FutureWarning: Dropping invalid columns in DataFrameGroupBy.transform is deprecated. In a future version, a TypeError will be raised. Before calling .transform, select only columns which should be valid for the function.
pandas/core/indexes/accessors.py::pandas.core.indexes.accessors.DatetimeProperties.isocalendar
<doctest pandas.core.indexes.accessors.DatetimeProperties.isocalendar[0]>:1: FutureWarning: Inferring datetime64[ns] from data containing strings is deprecated and will be removed in a future version. To retain the old behavior explicitly pass Series(data, dtype=datetime64[ns])
pandas/core/indexes/base.py::pandas.core.indexes.base.Index.equals
<doctest pandas.core.indexes.base.Index.equals[11]>:1: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.NumericIndex with the appropriate dtype instead.
pandas/core/indexes/base.py::pandas.core.indexes.base.Index.equals
<doctest pandas.core.indexes.base.Index.equals[13]>:1: FutureWarning: pandas.UInt64Index is deprecated and will be removed from pandas in a future version. Use pandas.NumericIndex with the appropriate dtype instead.
pandas/core/indexes/base.py::pandas.core.indexes.base.Index.is_mixed
<doctest pandas.core.indexes.base.Index.is_mixed[1]>:1: FutureWarning: Index.is_mixed is deprecated and will be removed in a future version. Check index.inferred_type directly instead.
pandas/core/indexes/datetimes.py::pandas.core.indexes.datetimes.date_range
<doctest pandas.core.indexes.datetimes.date_range[8]>:1: FutureWarning: Argument `closed` is deprecated in favor of `inclusive`.
pandas/core/indexes/multi.py::pandas.core.indexes.multi.MultiIndex._is_lexsorted
<doctest pandas.core.indexes.multi.MultiIndex._is_lexsorted[0]>:1: FutureWarning: MultiIndex.is_lexsorted is deprecated as a public function, users should use MultiIndex.is_monotonic_increasing instead.
pandas/core/indexes/multi.py::pandas.core.indexes.multi.MultiIndex._is_lexsorted
<doctest pandas.core.indexes.multi.MultiIndex._is_lexsorted[1]>:1: FutureWarning: MultiIndex.is_lexsorted is deprecated as a public function, users should use MultiIndex.is_monotonic_increasing instead.
pandas/core/indexes/multi.py::pandas.core.indexes.multi.MultiIndex._is_lexsorted
<doctest pandas.core.indexes.multi.MultiIndex._is_lexsorted[2]>:1: FutureWarning: MultiIndex.is_lexsorted is deprecated as a public function, users should use MultiIndex.is_monotonic_increasing instead.
pandas/core/indexes/multi.py::pandas.core.indexes.multi.MultiIndex._is_lexsorted
<doctest pandas.core.indexes.multi.MultiIndex._is_lexsorted[3]>:1: FutureWarning: MultiIndex.is_lexsorted is deprecated as a public function, users should use MultiIndex.is_monotonic_increasing instead.
pandas/core/indexes/multi.py::pandas.core.indexes.multi.MultiIndex._is_lexsorted
<doctest pandas.core.indexes.multi.MultiIndex._is_lexsorted[4]>:1: FutureWarning: MultiIndex.is_lexsorted is deprecated as a public function, users should use MultiIndex.is_monotonic_increasing instead.
pandas/core/indexes/multi.py::pandas.core.indexes.multi.MultiIndex._is_lexsorted
<doctest pandas.core.indexes.multi.MultiIndex._is_lexsorted[5]>:1: FutureWarning: MultiIndex.is_lexsorted is deprecated as a public function, users should use MultiIndex.is_monotonic_increasing instead.
pandas/core/ops/missing.py::pandas.core.ops.missing.mask_zero_div_zero
<doctest pandas.core.ops.missing.mask_zero_div_zero[3]>:1: RuntimeWarning: divide by zero encountered in floor_divide
pandas/core/window/rolling.py::pandas.core.window.rolling.Rolling.count
<doctest pandas.core.window.rolling.Rolling.count[1]>:1: FutureWarning: min_periods=None will default to the size of window consistent with other methods in a future version. Specify min_periods=0 instead.
The text was updated successfully, but these errors were encountered:
from a recent doc-build (failure is not related to this issue)
https://github.com/pandas-dev/pandas/runs/4562675953?check_suite_focus=true
I am not entirely sure where these are generated but we should fix in the doc-strings if this where they are coming from.
The text was updated successfully, but these errors were encountered: