We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
df = pd.DataFrame({'group': ['A', 'A', 'B'], 'v': [4, 5, 6]}, index=[-1, -2, -3]) def f(values, index): return np.mean(index) df.groupby('group').aggregate(f, engine='numba') # Result is: # v # group # A 0.5 # B 2.0
The behaviour when engine='numba' is inconsistent with engine='cython':
def f_cython(x): return np.mean(x.index) df.groupby('group').aggregate(f_cython, engine='cython') # Result is: # v # group # A -1.5 # B -3.0
Furthermore engine='numba' would be more useful if it calls func with the DataFrame index.
v group A -1.5 B -3.0
pd.show_versions()
commit : c7f7443 python : 3.7.3.final.0 python-bits : 64 OS : Linux OS-release : 5.4.0-80-generic Version : #90-Ubuntu SMP Fri Jul 9 22:49:44 UTC 2021 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_GB.UTF-8 LOCALE : en_GB.UTF-8
pandas : 1.3.1 numpy : 1.20.3 pytz : 2021.1 dateutil : 2.8.2 pip : 19.2.3 setuptools : 52.0.0.post20210125 Cython : 0.29.24 pytest : 6.2.4 hypothesis : 6.14.1 sphinx : 4.0.2 blosc : None feather : None xlsxwriter : 3.0.1 lxml.etree : 4.6.3 html5lib : 1.1 pymysql : None psycopg2 : None jinja2 : 3.0.1 IPython : 7.26.0 pandas_datareader: None bs4 : 4.9.3 bottleneck : 1.3.2 fsspec : 2021.07.0 fastparquet : None gcsfs : None matplotlib : 3.1.1 numexpr : 2.7.3 odfpy : None openpyxl : 3.0.7 pandas_gbq : None pyarrow : None pyxlsb : None s3fs : None scipy : 1.6.2 sqlalchemy : 1.4.22 tables : 3.6.1 tabulate : None xarray : None xlrd : 2.0.1 xlwt : 1.3.0 numba : 0.53.1
The text was updated successfully, but these errors were encountered:
I would like to work on this issue , can you make assign to me @richbwood
Sorry, something went wrong.
Successfully merging a pull request may close this issue.
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
Problem description
The behaviour when engine='numba' is inconsistent with engine='cython':
Furthermore engine='numba' would be more useful if it calls func with the DataFrame index.
Expected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : c7f7443
python : 3.7.3.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-80-generic
Version : #90-Ubuntu SMP Fri Jul 9 22:49:44 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 1.3.1
numpy : 1.20.3
pytz : 2021.1
dateutil : 2.8.2
pip : 19.2.3
setuptools : 52.0.0.post20210125
Cython : 0.29.24
pytest : 6.2.4
hypothesis : 6.14.1
sphinx : 4.0.2
blosc : None
feather : None
xlsxwriter : 3.0.1
lxml.etree : 4.6.3
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.0.1
IPython : 7.26.0
pandas_datareader: None
bs4 : 4.9.3
bottleneck : 1.3.2
fsspec : 2021.07.0
fastparquet : None
gcsfs : None
matplotlib : 3.1.1
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.2
sqlalchemy : 1.4.22
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 2.0.1
xlwt : 1.3.0
numba : 0.53.1
The text was updated successfully, but these errors were encountered: