You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[this should explain why the current behaviour is a problem and why the expected output is a better solution]
For a simple dataframe, I cannot rank a grouped dataframe on non-numeric data type. For example, I want to group by ID and rank a column. My aim here is to identify duplicates in one column by ranking it.
This is the problem I get:
df.groupby('id')['title'].rank(method = "first")
---------------------------------------------------------------------------
DataError Traceback (most recent call last)
~/projects/dentaway-marketing/linkedin-jobs-scraper/process_linkedin_jobs_data.py in
----> 276 df.groupby('id')['title'].rank(method = "first")
~/anaconda3/envs/dev/lib/python3.8/site-packages/pandas/core/groupby/groupby.py in rank(self, method, ascending, na_option, pct, axis)
2299 msg = "na_option must be one of 'keep', 'top', or 'bottom'"
2300 raise ValueError(msg)
-> 2301 return self._cython_transform(
2302 "rank",
2303 numeric_only=False,
~/anaconda3/envs/dev/lib/python3.8/site-packages/pandas/core/groupby/groupby.py in _cython_transform(self, how, numeric_only, **kwargs)
970
971 if len(output) == 0:
--> 972 raise DataError("No numeric types to aggregate")
973
974 return self._wrap_transformed_output(output)
DataError: No numeric types to aggregate
Expected Output
The expected output should be a ranked series.
Output of pd.show_versions()
[paste the output of pd.show_versions() here leaving a blank line after the details tag]
pandas is installed with pip.
INSTALLED VERSIONS
commit : 67a3d42
python : 3.8.3.final.0
python-bits : 64
OS : Darwin
OS-release : 20.1.0
Version : Darwin Kernel Version 20.1.0: Sat Oct 31 00:07:11 PDT 2020; root:xnu-7195.50.7~2/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
Problem description
[this should explain why the current behaviour is a problem and why the expected output is a better solution]
For a simple dataframe, I cannot rank a grouped dataframe on non-numeric data type. For example, I want to group by ID and rank a column. My aim here is to identify duplicates in one column by ranking it.
This is the problem I get:
Expected Output
The expected output should be a ranked series.
Output of
pd.show_versions()
[paste the output of
pd.show_versions()
here leaving a blank line after the details tag]pandas is installed with pip.
INSTALLED VERSIONS
commit : 67a3d42
python : 3.8.3.final.0
python-bits : 64
OS : Darwin
OS-release : 20.1.0
Version : Darwin Kernel Version 20.1.0: Sat Oct 31 00:07:11 PDT 2020; root:xnu-7195.50.7~2/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
pandas : 1.1.4
numpy : 1.18.2
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 49.2.0.post20200714
Cython : 0.29.21
pytest : 5.4.3
hypothesis : None
sphinx : 3.1.2
blosc : None
feather : None
xlsxwriter : 1.2.9
lxml.etree : 4.5.2
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.16.1
pandas_datareader: None
bs4 : 4.9.1
bottleneck : 1.3.2
fsspec : 0.7.4
fastparquet : None
gcsfs : None
matplotlib : 3.2.2
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.4
pandas_gbq : None
pyarrow : 2.0.0
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.5.0
sqlalchemy : 1.3.18
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.50.1
The text was updated successfully, but these errors were encountered: