BUG: GroupBy sum on an Int64 column with min_count=1 is wrong when all values are null #34172
Closed
2 of 3 tasks
Labels
Milestone
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Problem description
When summing with min_count=1 (so that groups with all nulls sum to null), DataFrame.sum exhibits expected behaviour (ie, all nulls sum to null), but GroupBy.sum returns the minimum Int64 -9223372036854775808 rather than
<NA>
.Expected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.6.6.final.0
python-bits : 64
OS : Darwin
OS-release : 17.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 1.0.3
numpy : 1.18.4
pytz : 2020.1
dateutil : 2.8.1
pip : 20.0.2
setuptools : 45.1.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.14.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
The text was updated successfully, but these errors were encountered: