You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@ Zaharid I don't think these are comparable. On 0.24.2 I get the (incorrect) result of just ~100 rows because . If you specify observed=True, you should see similar timings
Apologies if it has been, there are a few issues that may be related, in particular
#33924
#28122
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
Problem description
The above example runs some 20 times slower on pandas version 1.0 as compared to 0.24. For 0.24 timing the script reports
and most of the loop runtime is comparable to the import time. However for pandas 1.0 I get
I ran py-spy both cases. This is what I get for 0.24:
and this is for 1.0
Comparing the two, there seems to be some additional reindexing happening, which is responsible for most of the runtime.
Problem description
The code snipped above works around 20 times slower in pandas 1.03 compared to pandas 0.24.
Output of
pd.show_versions()
Slow 1.0 version
INSTALLED VERSIONS
commit : None
python : 3.8.2.final.0
python-bits : 64
OS : Linux
OS-release : 5.3.0-51-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.3
numpy : 1.18.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.2.0.post20200511
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
Fast 0.24 version
INSTALLED VERSIONS ------------------ commit: None python: 3.8.2.final.0 python-bits: 64 OS: Linux OS-release: 5.3.0-51-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8pandas: 0.24.2
pytest: None
pip: 20.0.2
setuptools: 46.2.0.post20200511
Cython: None
numpy: 1.18.1
scipy: None
pyarrow: None
xarray: None
IPython: 7.13.0
sphinx: None
patsy: None
dateutil: 2.8.1
pytz: 2020.1
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml.etree: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.11.2
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None
The text was updated successfully, but these errors were encountered: