Skip to content

Consistent dtype output for element wise operations on empty dataframes #32802

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
benmatwil opened this issue Mar 18, 2020 · 1 comment
Open
Labels
API - Consistency Internal Consistency of API/Behavior Bug Dtype Conversions Unexpected or buggy dtype conversions Numeric Operations Arithmetic, Comparison, and Logical operations

Comments

@benmatwil
Copy link

Code Sample, a copy-pastable example if possible

import pandas as pd
s = pd.Series([], dtype='datetime64[ns, UTC]')
df = pd.concat([s, s], axis=1) # empty dataframe of two columns of datetime dtype
# want the minimum of the two datetime columns element wise
min_dates = df.min(axis=1) # output series is of dtype float64

# it's fine if dataframe is non-empty
import pandas as pd
s = pd.Series(pd.to_datetime([f'2020-01-0{i}' for i in range(1, 10)], utc=True))
df = pd.concat([s, s], axis=1) # non-empty dataframe of two columns of datetime dtype
min_dates = df.min(axis=1) # output series is of dtype datetime64[ns, UTC]

Problem description

When dataframe is empty, doing a .min(axis=1) outputs a series of dtype float64 even though all columns were dtype datetime64.
Should this be consitent on dtypes and output min_dates with dtype datetime64[ns, UTC].

This is only an issue when the dataframe is empty.
If the dataframe is not empty, the dtype is conserved and min_dates outputs with dtype datetime64[ns, UTC].

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.6.3.final.0
python-bits : 64
OS : Linux
OS-release : 3.10.0-862.3.3.el7.x86_64
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 1.0.2
numpy : 1.16.5
pytz : 2019.3
dateutil : 2.8.0
pip : 20.0.2
setuptools : 41.4.0
Cython : 0.29.13
pytest : 5.0.1
hypothesis : None
sphinx : 2.1.2
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.8.3 (dt dec pq3 ext lo64)
jinja2 : 2.10.1
IPython : 7.7.0
pandas_datareader: None
bs4 : 4.8.1
bottleneck : None
fastparquet : None
gcsfs : 0.3.1
lxml.etree : None
matplotlib : 3.1.1
numexpr : 2.6.9
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 0.15.1
pytables : None
pytest : 5.0.1
pyxlsb : None
s3fs : None
scipy : 1.3.1
sqlalchemy : 1.3.8
tables : 3.5.2
tabulate : None
xarray : 0.14.0
xlrd : 1.2.0
xlwt : None
xlsxwriter : None
numba : 0.46.0

@arw2019
Copy link
Member

arw2019 commented Jun 22, 2020

A slightly tweaked version of the original report:

import pandas as pd 
s1 = pd.Series([], dtype='datetime64[ns, UTC]') 
df1 = pd.concat([s1, s1], axis=1) # empty dataframe of two columns of datetime dtype 
# want the minimum of the two datetime columns element wise 
min_dates_1 = df1.min(axis=1) # output series is of dtype float64 
print(min_dates_1.dtype) 
 
s2 = pd.Series(pd.to_datetime([f'2020-01-0{i}' for i in range(1, 10)], utc=True)) 
df2 = pd.concat([s2, s2], axis=1) # non-empty dataframe of two columns of datetime dtype 
min_dates_2 = df2.min(axis=1) # output series is of dtype datetime64[ns, UTC] 
print(min_dates_2.dtype) 

Also - I still get this on the master version of pandas.

Output of pd.show_versions()

INSTALLED VERSIONS

commit : 9e1b95f
python : 3.8.2.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-106-generic
Version : #107-Ubuntu SMP Thu Jun 4 11:27:52 UTC 2020
machine : x86_64
processor :
byteorder : little
LC_ALL : C.UTF-8
LANG : C.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.1.0.dev0+2003.g9e1b95f72.dirty
numpy : 1.17.5
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 46.4.0.post20200518
Cython : 0.29.19
pytest : 5.4.2
hypothesis : 5.15.1
sphinx : 3.0.4
blosc : None
feather : None
xlsxwriter : 1.2.8
lxml.etree : 4.5.1
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.14.0
pandas_datareader: None
bs4 : 4.9.1
bottleneck : 1.3.2
fastparquet : 0.4.0
gcsfs : None
matplotlib : 3.2.1
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : 0.17.1
pytables : None
pyxlsb : None
s3fs : 0.4.2
scipy : 1.4.1
sqlalchemy : 1.3.17
tables : 3.6.1
tabulate : 0.8.7
xarray : 0.15.1
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.49.1

@jbrockmendel jbrockmendel added Numeric Operations Arithmetic, Comparison, and Logical operations API - Consistency Internal Consistency of API/Behavior labels Sep 2, 2020
@mroeschke mroeschke added Bug Dtype Conversions Unexpected or buggy dtype conversions labels Jul 30, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
API - Consistency Internal Consistency of API/Behavior Bug Dtype Conversions Unexpected or buggy dtype conversions Numeric Operations Arithmetic, Comparison, and Logical operations
Projects
None yet
Development

No branches or pull requests

4 participants