Skip to content

rank() throws TypeError: 'NoneType' object is not callable #30364

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
levmorgan opened this issue Dec 19, 2019 · 1 comment
Closed

rank() throws TypeError: 'NoneType' object is not callable #30364

levmorgan opened this issue Dec 19, 2019 · 1 comment

Comments

@levmorgan
Copy link

Code Sample, a copy-pastable example if possible

import numpy as np
import pandas as pd

groups = np.array(["A", "B"])
years = np.arange(2015, 2018)
values = np.arange(1,3)

table = np.array([years.repeat(len(groups)), np.tile(groups, len(years)), np.tile(values, len(years))]).T

table = pd.DataFrame(table, columns = ["year", "group", "val"])

table["year"] = table["year"].astype(int)
table["val"] = table["val"].astype(int)
table["group"] = table["group"].astype(str)

grp = table.groupby("year")

grp.rank()

Problem description

Running the rank method on the grouped table throws TypeError: 'NoneType' object is not callable

Expected Output

It should return ranked data for each year, or a descriptive error message.

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.6.9.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-70-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 0.25.3
numpy : 1.17.4
pytz : 2019.3
dateutil : 2.8.1
pip : 9.0.1
setuptools : 39.0.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : 0.999999999
pymysql : 0.9.3
psycopg2 : None
jinja2 : 2.10.3
IPython : 7.10.2
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.2
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None

@TomAugspurger
Copy link
Contributor

Thanks for the excellent report. This appears to be "fixed" on master, as no error is raised.

In [2]: import numpy as np
   ...: import pandas as pd
   ...:
   ...: groups = np.array(["A", "B"])
   ...: years = np.arange(2015, 2018)
   ...: values = np.arange(1,3)
   ...:
   ...: table = np.array([years.repeat(len(groups)), np.tile(groups, len(years)), np.tile(values, len(years))]).T
   ...:
   ...: table = pd.DataFrame(table, columns = ["year", "group", "val"])
   ...:
   ...: table["year"] = table["year"].astype(int)
   ...: table["val"] = table["val"].astype(int)
   ...: table["group"] = table["group"].astype(str)
   ...:
   ...: grp = table.groupby("year")
   ...:
   ...: grp.rank()
Out[2]:
   val
0  1.0
1  2.0
2  1.0
3  2.0
4  1.0
5  2.0

We still have #19560 for discussing what to do with non-numeric data.

@TomAugspurger TomAugspurger added this to the No action milestone Dec 20, 2019
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants