Skip to content

Misleading error message when Series.dt.tz_convert overflows #28611

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
torfsen opened this issue Sep 25, 2019 · 1 comment
Closed

Misleading error message when Series.dt.tz_convert overflows #28611

torfsen opened this issue Sep 25, 2019 · 1 comment
Labels
Bug Datetime Datetime data dtype Error Reporting Incorrect or improved errors from pandas

Comments

@torfsen
Copy link

torfsen commented Sep 25, 2019

Code Sample, a copy-pastable example if possible

>>> import pandas as pd
>>> import datetime as dt
>>> pd.Series([dt.datetime.max.replace(tzinfo=dt.timezone.utc)]).tz_convert('Europe/Berlin')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'datetime.datetime' object is not callable
>>> pd.Series([dt.datetime.max.replace(tzinfo=dt.timezone.utc)]).tz_convert('Europe/Berlin')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/generic.py", line 9703, in tz_convert
    ax = _tz_convert(ax, tz)
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/generic.py", line 9686, in _tz_convert
    "%s is not a valid DatetimeIndex or " "PeriodIndex" % ax_name
TypeError: index is not a valid DatetimeIndex or PeriodIndex
>>> pd.Series([dt.datetime.max.replace(tzinfo=dt.timezone.utc)]).dt.tz_convert('Europe/Berlin')
Traceback (most recent call last):
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/arrays/datetimes.py", line 1979, in objects_to_datetime64ns
    values, tz_parsed = conversion.datetime_to_datetime64(data)
  File "pandas/_libs/tslibs/conversion.pyx", line 189, in pandas._libs.tslibs.conversion.datetime_to_datetime64
  File "pandas/_libs/tslibs/conversion.pyx", line 399, in pandas._libs.tslibs.conversion.convert_datetime_to_tsobject
  File "pandas/_libs/tslibs/np_datetime.pyx", line 118, in pandas._libs.tslibs.np_datetime.check_dts_bounds
pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds nanosecond timestamp: 9999-12-31 23:59:59

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/accessor.py", line 93, in f
    return self._delegate_method(name, *args, **kwargs)
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/indexes/accessors.py", line 106, in _delegate_method
    values = self._get_values()
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/indexes/accessors.py", line 55, in _get_values
    return DatetimeIndex(data, copy=False, name=self.name)
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/indexes/datetimes.py", line 334, in __new__
    int_as_wall_time=True,
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/arrays/datetimes.py", line 446, in _from_sequence
    int_as_wall_time=int_as_wall_time,
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/arrays/datetimes.py", line 1866, in sequence_to_dt64ns
    data, dayfirst=dayfirst, yearfirst=yearfirst
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/arrays/datetimes.py", line 1984, in objects_to_datetime64ns
    raise e
  File "/var/local/conda/envs/pandas-debug/lib/python3.7/site-packages/pandas/core/arrays/datetimes.py", line 1975, in objects_to_datetime64ns
    require_iso8601=require_iso8601,
  File "pandas/_libs/tslib.pyx", line 465, in pandas._libs.tslib.array_to_datetime
  File "pandas/_libs/tslib.pyx", line 543, in pandas._libs.tslib.array_to_datetime
ValueError: Tz-aware datetime.datetime cannot be converted to datetime64 unless utc=True

Problem description

The error message of the outer exception above is misleading. The inner exception has the right error message, but in many cases (e.g. log files) only the outer exception's message is displayed.

If I understand things correctly, the underlying issue is discussed in #12677. In contrast to that ticket I'm fine with getting the exception but would like a clearer message.

Expected Output

The inner exception message should be kept instead of being replaced with a misleading new message.

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.7.4.final.0
python-bits : 64
OS : Linux
OS-release : 5.0.0-29-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 0.25.1
numpy : 1.16.5
pytz : 2019.2
dateutil : 2.8.0
pip : 19.2.3
setuptools : 41.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None

@mroeschke mroeschke added Error Reporting Incorrect or improved errors from pandas Datetime Datetime data dtype labels Sep 25, 2019
@mroeschke mroeschke added the Bug label Apr 2, 2020
@mroeschke
Copy link
Member

This case doesn't look possible since the original series in now an object type so closing

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Datetime Datetime data dtype Error Reporting Incorrect or improved errors from pandas
Projects
None yet
Development

No branches or pull requests

2 participants