You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
For tz-aware timestamp columns, as soon as pd.NaT value is present in any row in any of the columns, than the column-wise min()/max() operations returns all NaNs.
If columns are non-tz-aware, then min()/max() work as expected, i.e. the result is similar to the one pasted below (except for the timezone part).
Code Sample, a copy-pastable example if possible
produces:
Problem description
For tz-aware timestamp columns, as soon as
pd.NaT
value is present in any row in any of the columns, than the column-wisemin()/max()
operations returns allNaN
s.If columns are non-tz-aware, then
min()/max()
work as expected, i.e. the result is similar to the one pasted below (except for the timezone part).Expected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.6.9.final.0
python-bits : 64
OS : Darwin
OS-release : 18.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 0.25.1
numpy : 1.17.2
pytz : 2019.2
dateutil : 2.8.0
pip : 18.0
setuptools : 41.2.0
Cython : 0.27.3
pytest : 4.4.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.2.6
html5lib : None
pymysql : None
psycopg2 : 2.7.3.2 (dt dec pq3 ext lo64)
jinja2 : 2.10.1
IPython : 7.7.0
pandas_datareader: None
bs4 : 4.6.3
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : 4.2.6
matplotlib : 3.1.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : 0.11.0
pyarrow : 0.13.0
pytables : None
s3fs : None
scipy : 1.0.0
sqlalchemy : 1.3.8
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
The text was updated successfully, but these errors were encountered: