different type conversion results in assignments using DataFrame.loc and DataFrame.at #26395
Labels
Bug
Dtype Conversions
Unexpected or buggy dtype conversions
Indexing
Related to indexing on series/frames, not to indexes themselves
Milestone
Code Sample, a copy-pastable example if possible
Problem description
the type-conversion/cast behavior is not documented for either .loc or .at.
Expected Output
expect same behavior. also expect a warning/error if casting from float to int
Output of
pd.show_versions()
[paste the output of
pd.show_versions()
here below this line]pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.5.6.final.0
python-bits: 64
OS: Linux
OS-release: 4.15.0-48-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.22.0
pytest: 3.7.3
pip: 18.0
setuptools: 40.2.0
Cython: 0.28.5
numpy: 1.14.5
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.5.0
sphinx: 1.7.7
patsy: 0.5.0
dateutil: 2.7.3
pytz: 2018.5
blosc: None
bottleneck: 1.2.1
tables: 3.4.4
numexpr: 2.6.1
feather: None
matplotlib: 2.2.3
openpyxl: 2.5.5
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.0.8
lxml: 4.2.4
bs4: 4.6.3
html5lib: 1.0.1
sqlalchemy: 1.2.11
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: 0.6.0
The text was updated successfully, but these errors were encountered: