-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
subplots=True automatic xlim considers nan values since 0.24 #25160
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
Feel free to change the milestone as you see fit. That being said, this sounds like a behavior change (whether correct or intentional or not). |
Imho seing this from a perspective of someone who is working with timeseries 24/7, this change of behavior should be unintentional. |
All else equal, we probably want to match matplotlib's behavior. But we would need to understand why this changed first. It'd be helpful if someone could bisect which commit caused the change. |
Pushing off 0.24.2. |
|
take |
Code Sample,:
Problem description
The code sample above produces two plots with different x-limits in pandas version
0.23.4
, whereas in0.24.0
both subplots share the same x-limits.In my opinion the behavior of pandas version
0.23.4
should be correct, whereas the behavior of0.24.0
resembles settingsharex=True
.Looking at the changelog, I haven't found any informationen on an intended change, thus I report it as a bug.
Is there any workaround for this which is still using automatic x-limit scaling?
Separate line plotting for example does not solve the problem:
Expected Output
Expected output is attached as pdf.
Output of
pd.show_versions() for 0.24.0
INSTALLED VERSIONS
commit: None
python: 3.7.1.final.0
python-bits: 64
OS: Windows
OS-release: 7
machine: AMD64
processor: Intel64 Family 6 Model 63 Stepping 2, GenuineIntel
byteorder: little
LC_ALL: None
LANG: en
LOCALE: None.None
pandas: 0.24.0
pytest: 4.0.2
pip: 18.1
setuptools: 40.6.3
Cython: 0.29.2
numpy: 1.15.4
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 7.2.0
sphinx: 1.8.2
patsy: 0.5.1
dateutil: 2.7.5
pytz: 2018.7
blosc: None
bottleneck: 1.2.1
tables: 3.4.4
numexpr: 2.6.8
feather: None
matplotlib: 3.0.2
openpyxl: 2.5.12
xlrd: 1.2.0
xlwt: 1.3.0
xlsxwriter: 1.1.2
lxml.etree: 4.2.5
bs4: 4.6.3
html5lib: 1.0.1
sqlalchemy: 1.2.15
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None
Output of ``pd.show_versions() for 0.23.4
Expected output
``
INSTALLED VERSIONS
commit: None
python: 3.7.1.final.0
python-bits: 64
OS: Windows
OS-release: 7
machine: AMD64
processor: Intel64 Family 6 Model 63 Stepping 2, GenuineIntel
byteorder: little
LC_ALL: None
LANG: en
LOCALE: None.None
pandas: 0.23.4
pytest: 4.0.2
pip: 18.1
setuptools: 40.6.3
Cython: 0.29.2
numpy: 1.15.4
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 7.2.0
sphinx: 1.8.2
patsy: 0.5.1
dateutil: 2.7.5
pytz: 2018.7
blosc: None
bottleneck: 1.2.1
tables: 3.4.4
numexpr: 2.6.8
feather: None
matplotlib: 3.0.2
openpyxl: 2.5.12
xlrd: 1.2.0
xlwt: 1.3.0
xlsxwriter: 1.1.2
lxml: 4.2.5
bs4: 4.6.3
html5lib: 1.0.1
sqlalchemy: 1.2.15
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
The text was updated successfully, but these errors were encountered: