Skip to content

Series.apply on categorical with NaN has wrong behavior #24241

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
tchklovski opened this issue Dec 11, 2018 · 0 comments · Fixed by #24275
Closed

Series.apply on categorical with NaN has wrong behavior #24241

tchklovski opened this issue Dec 11, 2018 · 0 comments · Fixed by #24275
Labels
Categorical Categorical Data Type Missing-data np.nan, pd.NaT, pd.NA, dropna, isnull, interpolate
Milestone

Comments

@tchklovski
Copy link

Code Sample, a copy-pastable example if possible

# Your code here
>>> print(pd.isna(pd.Series(['A', 'B', pd.np.nan], dtype='category')))
0    False
1    False
2     True
dtype: bool
>>> print(pd.Series(['A', 'B', pd.np.nan], dtype='category').apply(pd.isna))
0    False
1    False
2    False
dtype: object
>>> print(pd.Series(['A', 'A', pd.np.nan], dtype='category').apply(pd.isna))
0    False
1    False
2      NaN
dtype: category
Categories (1, object): [False]

Problem description

I would expect case 2 (['A', 'B', pd.np.nan]) to be either like case 1 or case 3.
I think the correct behavior would be case 1.

Issue #21565 looks similar but not the same

Expected Output

0    False
1    False
2     True
dtype: bool

in all cases.

Behaves as expected if dtype='category' is omitted

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 64 OS: Darwin OS-release: 18.0.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: None LOCALE: en_US.UTF-8

pandas: 0.23.4
pytest: 4.0.1
pip: 18.1
setuptools: 39.0.1
Cython: 0.29.1
numpy: 1.15.4
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 7.1.1
sphinx: None
patsy: 0.5.1
dateutil: 2.7.5
pytz: 2018.7
blosc: None
bottleneck: 1.2.1
tables: None
numexpr: 2.6.8
feather: None
matplotlib: 3.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: 3.7.3
bs4: 4.6.3
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

@jreback jreback added Missing-data np.nan, pd.NaT, pd.NA, dropna, isnull, interpolate Categorical Categorical Data Type labels Dec 14, 2018
@jreback jreback added this to the 0.24.0 milestone Dec 19, 2018
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Categorical Categorical Data Type Missing-data np.nan, pd.NaT, pd.NA, dropna, isnull, interpolate
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants