Inconsistent handling of nan-float64 in Series.isin() #22205
Labels
Algos
Non-arithmetic algos: value_counts, factorize, sorting, isin, clip, shift, diff
Bug
Missing-data
np.nan, pd.NaT, pd.NA, dropna, isnull, interpolate
Milestone
Code Sample, a copy-pastable example if possible
results in
True
, howeverresults in
False
, even mores.isin([np.nan]).any()
results inFalse
Problem description
Obviously, the result should be the same in both cases.
Expected Output
IMO
True
is more consistent with the behavior of Pandas in other functions (such aspd.unique()
).Output of
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.2.final.0
python-bits: 64
OS: Linux
OS-release: 4.4.0-53-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.22.0
pytest: 3.2.1
pip: 10.0.1
setuptools: 36.5.0.post20170921
Cython: 0.28.3
numpy: 1.13.1
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.1.0
sphinx: 1.6.3
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.8
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 0.9.8
lxml: 3.8.0
bs4: 4.6.0
html5lib: 0.9999999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: 0.1.3
fastparquet: None
pandas_gbq: None
pandas_datareader: None
The text was updated successfully, but these errors were encountered: