Skip to content

BUG: DataFrame.loc[*, label] fails with IntervalIndex #19977

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
jschendel opened this issue Mar 2, 2018 · 2 comments · Fixed by #22576
Closed

BUG: DataFrame.loc[*, label] fails with IntervalIndex #19977

jschendel opened this issue Mar 2, 2018 · 2 comments · Fixed by #22576
Labels
Bug Indexing Related to indexing on series/frames, not to indexes themselves
Milestone

Comments

@jschendel
Copy link
Member

Code Sample, a copy-pastable example if possible

Setup:

In [2]: ii = pd.interval_range(0, 4)

In [3]: df = pd.DataFrame(np.arange(12).reshape(4, 3), index=ii, columns=list('ABC'))

In [4]: df
Out[4]:
        A   B   C
(0, 1]  0   1   2
(1, 2]  3   4   5
(2, 3]  6   7   8
(3, 4]  9  10  11

Scalar and Interval objects raise an AttributeError:

In [5]: df.loc[0.5, 'A']
---------------------------------------------------------------------------
AttributeError: 'pandas._libs.interval.IntervalTree' object has no attribute 'get_value'

In [6]: df.loc[pd.Interval(0, 1), 'A']
---------------------------------------------------------------------------
AttributeError: 'pandas._libs.interval.IntervalTree' object has no attribute 'get_value'

It works fine if column labels aren't passed, or if a list-like is passed:

In [7]: df.loc[0.5]
Out[7]:
A    0
B    1
C    2
Name: (0, 1], dtype: int32

In [8]: df.loc[pd.Interval(0, 1)]
Out[8]:
A    0
B    1
C    2
Name: (0, 1], dtype: int32

In [9]: df.loc[0.5, ['A']]
Out[9]:
A    0
Name: (0, 1], dtype: int32

In [10]: df.loc[pd.Interval(0, 1), ['B', 'C']]
Out[10]:
B    1
C    2
Name: (0, 1], dtype: int32

Problem description

Indexing with loc fails.

Expected Output

I'd expect loc to return the appropriate value.

Output of pd.show_versions()

INSTALLED VERSIONS

commit: 0bfb61b
python: 3.6.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None

pandas: 0.23.0.dev0+422.g0bfb61b
pytest: 3.1.2
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.13.3
scipy: 1.0.0
pyarrow: 0.6.0
xarray: 0.9.6
IPython: 6.1.0
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.4
feather: 0.4.0
matplotlib: 2.0.2
openpyxl: 2.4.8
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 0.9.8
lxml: 3.8.0
bs4: None
html5lib: 0.999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
fastparquet: 0.1.0
pandas_gbq: None
pandas_datareader: None

@gfyoung gfyoung added Indexing Related to indexing on series/frames, not to indexes themselves Bug labels Mar 8, 2018
@gfyoung
Copy link
Member

gfyoung commented Mar 8, 2018

Indexing with IntervalIndex is unusual, but this indeed should not crash. Patch and PR are welcome!

@jacksonjos
Copy link

Hi, I'm going to work on this issue this weekend.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Indexing Related to indexing on series/frames, not to indexes themselves
Projects
None yet
Development

Successfully merging a pull request may close this issue.

4 participants