We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Setup:
In [2]: s = pd.Series(pd.date_range('20180101', periods=3, tz='US/Eastern')) In [3]: s Out[3]: 0 2018-01-01 00:00:00-05:00 1 2018-01-02 00:00:00-05:00 2 2018-01-03 00:00:00-05:00 dtype: datetime64[ns, US/Eastern]
Timezone information is lost after using cut:
cut
In [4]: pd.cut(s, 2) Out[4]: 0 (2018-01-01 04:57:07.200000, 2018-01-02 05:00:00] 1 (2018-01-01 04:57:07.200000, 2018-01-02 05:00:00] 2 (2018-01-02 05:00:00, 2018-01-03 05:00:00] dtype: category Categories (2, interval[datetime64[ns]]): [ < (2018-01-01 04:57:07.200000, 2018-01-02 05:00:00] < (2018-01-02 05:00:00, 2018-01-03 05:00:00]]
Timezone information is lost after using qcut:
qcut
In [5]: pd.qcut(s, 2) Out[5]: 0 (2018-01-01 04:59:59.999999999, 2018-01-02 05:... 1 (2018-01-01 04:59:59.999999999, 2018-01-02 05:... 2 (2018-01-02 05:00:00, 2018-01-03 05:00:00] dtype: category Categories (2, interval[datetime64[ns]]): [ < (2018-01-01 04:59:59.999999999, 2018-01-02 05:0... < (2018-01-02 05:00:00, 2018-01-03 05:00:00]]
Timezone information is lost after using cut and qcut.
I'd except cut and qcut to retain timezone information.
pd.show_versions()
commit: ce77b79 python: 3.6.1.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None
pandas: 0.23.0.dev0+364.gce77b79 pytest: 3.1.2 pip: 9.0.1 setuptools: 27.2.0 Cython: 0.25.2 numpy: 1.13.3 scipy: 1.0.0 pyarrow: 0.6.0 xarray: 0.9.6 IPython: 6.1.0 sphinx: 1.5.6 patsy: 0.4.1 dateutil: 2.6.0 pytz: 2017.2 blosc: None bottleneck: None tables: 3.4.2 numexpr: 2.6.4 feather: 0.4.0 matplotlib: 2.0.2 openpyxl: 2.4.8 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 0.9.8 lxml: 3.8.0 bs4: None html5lib: 0.999 sqlalchemy: 1.1.13 pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None fastparquet: 0.1.0 pandas_gbq: None pandas_datareader: None
The text was updated successfully, but these errors were encountered:
Successfully merging a pull request may close this issue.
Code Sample, a copy-pastable example if possible
Setup:
Timezone information is lost after using
cut
:Timezone information is lost after using
qcut
:Problem description
Timezone information is lost after using
cut
andqcut
.Expected Output
I'd except
cut
andqcut
to retain timezone information.Output of
pd.show_versions()
INSTALLED VERSIONS
commit: ce77b79
python: 3.6.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.23.0.dev0+364.gce77b79
pytest: 3.1.2
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.13.3
scipy: 1.0.0
pyarrow: 0.6.0
xarray: 0.9.6
IPython: 6.1.0
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.4
feather: 0.4.0
matplotlib: 2.0.2
openpyxl: 2.4.8
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 0.9.8
lxml: 3.8.0
bs4: None
html5lib: 0.999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
fastparquet: 0.1.0
pandas_gbq: None
pandas_datareader: None
The text was updated successfully, but these errors were encountered: